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1.4 The Carathéodory construction . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Lebesgue measure on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6 Vector-valued measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Examples and applications 35
2.1 Measurable maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Hausdorff measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Ergodic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 Nonmeasurable sets and infinite games . . . . . . . . . . . . . . . . . . . . . 45

3 Measurable functions 51
3.1 Simple functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Measurable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Characterizing measurable functions . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Convergence of measurable functions . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Regularity of measurable functions . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Integration of simple functions . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.7 The integral in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Properties of integration 77
4.1 Integrable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Indefinite integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Convergence theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Product measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 The Lebesgue integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6 Changing the order of integration . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Differentiation and regularity 99
5.1 Differentiation of measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Existence of Radon measures . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3



4 CONTENTS

5.3 Differentation of vector-valued functions . . . . . . . . . . . . . . . . . . . . 100
5.4 Vitali covers and maximal inequalities . . . . . . . . . . . . . . . . . . . . . 100
5.5 The Lebesgue differentation theorem . . . . . . . . . . . . . . . . . . . . . . 105
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Preface

Clopen Analysis is an online compendium about real analysis, specializing in measure theory.
The material is at the level of a graduate-level course in real analysis.

The main novelty of Clopen Analysis is that it is freely available, and written by volun-
teers on the internet, possibly including you. In fact, any reader can contribute content to
Clopen Analysis via GitHub, and Clopen Analysis is dependent on the contributions of its
readers. Decisions about the content of Clopen Analysis shall be made by clear community
consensus, or a majority vote if consensus is unclear. At least for the present, Aidan Backus
manages the project, but this is subject to change.

Clopen Analysis was originally based on, and certainly would not exist, without the
lecture notes of Rieffel [Rie70], which were novel at the time for their treatment of integration
valued in Banach spaces from the getgo. However, the proofs that appear in Clopen Analysis
are drawn from a variety of sources, including but not limited to the books of Lang [Lan12],
Pugh [Pug13], and Rudin [Rud78].

The added level of abstraction caused by the fact that integrals are Banach-spaced valued
does not meaningfully increase the difficulty of proofs, with the exception of the characteri-
zation of measurable functions as those for which preimages of Borel sets are measurable. In
spite of the level of abstraction, we have strived to include many examples, and to keep the
content at a level that anyone with an undergraduate education in mathematics, including
but not limited to real analysis at the level of Pugh [Pug13], can peruse Clopen Analysis.

5



6 CONTENTS



Chapter 1

Constructing measures

A measure is a rule by which we assign “size” to certain sets. The notion of a measure
generalizes a handful of familiar notions, which we now review.

Example 1.0.1. If X is a set, we will define a measure known as the counting measure µ
of X, by declaring that for every finite subset Y ⊆ X, µ(Y ) is the cardinality of Y (i.e. the
number of elements of Y ).

We define the Lebesgue measure1 µ on boxes [a1, b1]×· · ·× [ad, bd] ⊆ Rd by declaring that

µ([a1, b1]× · · · × [ad, bd]) = (b1 − a1)(b2 − a2) · · · (bd − ad).

When d = 1 this is just the familiar notion of the length of a line segment; when d = 2 this
is the area of a rectangle; when d = 3 this is the volume of a rectangular prism.

In probability theory, one is concerned with sets of “outcomes”, or possible states that
the world could be in. The sets are known as “events”. Given an event E in a sample space
X, we define µ(E) to be the probability that the state that the world is in lies in E. Thus
µ(X) = 1.

1.1 Algebras of sets

A measure, remember, is going to be a rule that assigns a size to certain sets. In other words
it will be a function

µ : Σ→ [0,∞]

where Σ is a set whose elements are subsets of a fixed set X. The first thing we need to do
is determine what algebraic properties Σ should have.

1.1.1. To motivate the definition of Σ, we look to probability theory, using the terminology
of Example 1.0.1. Recall that in probability theory, elements of X are outcomes, or states
that the world could be in; suppose that the world is actually in state x. An observer, Alice,
might not have enough information to deduce that the world is in state x, but given an event
E ⊆ X, Alice might be able to deduce whether x ∈ E.

1Named after Henri Lebesgue (1875–1941), a French mathematician who introduced measure theory in
his book Intégrale, longueur, aire (Integral, length, area).
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8 CHAPTER 1. CONSTRUCTING MEASURES

Let Σ be the set of events E such that Alice knows whether E 3 x. Since every outcome
is in X, X ∈ Σ. Now suppose that Y, Z ∈ Σ. Then Alice knows whether x ∈ Y, x ∈ Z, so she
also knows whether x ∈ Y \Z.2 Furthermore, if Y1, Y2, . . . is a countable sequence of events,
then x lies in their union

⋃
n Yn iff there is n ∈ N such that x ∈ Yn; so if Y1, Y2, · · · ∈ Σ then

Alice can deduce whether x ∈
⋃
n Yn, thus

⋃
n Yn ∈ Σ.

Thus, a set Σ 3 X of subsets of X which is closed under countable union and complement
represents the information that an observer has. Such sets Σ are so important that we give
them a special name, as follows.

Definition 1.1.2. A σ-algebra3 in a set X is a set Σ, whose elements are subsets of X, such
that:

1. X ∈ Σ.

2. If Y, Z ∈ Σ then Y \ Z ∈ Σ.

3. If Y1, Y2, . . . is a countable sequence of sets in Σ then
⋃
n Yn is in Σ.

1.1.3. σ-algebras have strong closure properties. For example, if Σ is a σ-algebra, then
∅ = X\X ∈ Σ (Alice knows that an event which is impossible did not happen). Furthermore,
if Y ∈ Σ, then Y c = X \ Y ∈ Σ (if Alice knows whether an event Y happened, then she also
knows whether the event “Y did not happen” happened). So if Y1, Y2, · · · ∈ Σ, then

⋂
n

Yn =

(⋃
n

Y c
n

)c

∈ Σ

(if Alice knows whether Y1, Y2, . . . happened, then she knows whether Y1 happened and Y2

happened and Y3 happened and etc.)

1.1.4. Let Σ be a σ-algebra. In proofs it will frequently be useful to replace sequences of
sets in Σ with sequences of disjoint sets, without leaving Σ. The below lemma allows us to
accomplish this.

Lemma 1.1.5. Let Σ be a σ-algebra. Let (En)n be a sequence of sets in Σ. Then there is
a sequence of disjoint sets (Fn)n in Σ such that Fn ⊆ En and

∞⋃
n=1

En =
∞⋃
n=1

Fn.

Proof. Let F1 = E1 and for n ≥ 2,

Fn = En \
n−1⋃
i=1

Fi.

Then clearly the Fn are disjoint and have the same union as the En.

2If Alice knows that x ∈ Z, then she knows that x /∈ Y \Z. Otherwise, she knows that x /∈ Z, so x ∈ Y \Z
iff x ∈ Y , and Alice knows that x ∈ Y .

3Here σ should be thought of as meaning “countable”, referring to the closure under countable unions.
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Lemma 1.1.6. The intersection of a nonempty set of σ-algebras is a σ-algebra.

Proof. Let R be a set of σ-algebras and let Σ be its intersection. Since X ∈ Γ for every
Γ ∈ R, X ∈ Σ. If Y1, Y2, · · · ∈ Σ, then Y1, Y2, · · · ∈ Γ for every Γ, so Y =

⋃
n Yn ∈ Γ for

every Γ, so Y ∈ Σ. A similar argument works for closure under complements.

1.1.7. Whenever we refer to a “smallest” set X with a property P , we mean that for every
set Y with property P , X ⊆ Y .

Lemma 1.1.8. If C is a set of subsets of a set X, there is a smallest σ-algebra containing C.

Proof. The power set 2X = {Y : Y ⊆ X} is a σ-algebra (see Exercise 1.1.19) such that for
every Σ ∈ C, Σ ⊆ 2X . Let R be the set of all σ-algebras Γ such that for every Σ ∈ C, Σ ⊆ Γ;
since 2X ∈ R, R is nonempty, and since R ⊆ 22X , R is a set4.

By Lemma 1.1.6, the intersection R of R is a σ-algebra. But for every C ∈ C, C ∈ R
since C is in every element of R. Therefore R contains C.

Definition 1.1.9. The smallest σ-algebra containing every element of a set C is called the
σ-algebra generated by C. We denote it by σ(C).

1.1.10. The advantage of defining a σ-algebra by referring to its generators is that it is easy
to show that every element of the σ-algebra has a given property. This is quite easy to prove,
as the following lemma shows, but so very useful.

Lemma 1.1.11. Let X be a set, and let P be a property that subsets of X can have. Assume
that C is a set whose elements are subsets of X, and every element of C has property P . If
the set of all subsets of X with property P is a σ-algebra, then every element of σ(C) has
property P .

Proof. Let Σ be the σ-algebra of all subsets of X with property P . Then Σ contains σ(C).

1.1.12. We now come across the most important example of a σ-algebra. If the reader is
unfamiliar with topological spaces, in the below definition it suffices to take X = Rd, and T
the set of all unions of open balls in Rd, as this will be the most important case.

Definition 1.1.13. Let X be a topological space. Let T be the topology of X, the set of
all open subsets of X. We define the Borel σ-algebra5 B of X by B = σ(T ). A Borel set in
X is an element of B.

1.1.14. Let X be a topological space. It follows from the definition that every open or closed
subset of X is Borel, but also that countable unions of complements of countable unions of
complements of countable unions of complements of. . . of open sets of X is Borel. However,
some Borel sets can be even more complicated than that.

Lemma 1.1.15. Let X be a topological space. Assume that P is a property that subsets
of X can have, and that every open set has property P . If the set of subsets of X with
property P is a σ-algebra, then every Borel set has property P .

4as opposed to a proper class, like the set of all sets is
5Named after Émile Borel (1871–1956), a French probabilist who introduced many of the key ideas of

measure theory.
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Proof. By Lemma 1.1.11.

1.1.16. When is a set Borel? If X = N, then every set is open and so every set is Borel.
But it is not so obvious how to check whether a subset of Rd is Borel. Certainly any set you
will ever “naturally” encounter is Borel, but not every subset of Rd is Borel.

Theorem 1.1.17. There exists a subset of Rd which is not Borel. In fact, the set of Borel
subsets of Rd has strictly lower cardinality than the set of all subsets of Rd.

Proof. We defer the proof to a later stage – namely, Theorem 2.5.15.

Exercise 1.1.18. Interpret all of the theorems in this section in terms of knowledge that
Alice may have.

Exercise 1.1.19. Let X be a set. Show that the power set 2X — that is, the set of all
subsets of X — is a σ-algebra, as is {∅, X}.

Exercise 1.1.20. Recall from your algebra class the definition of a ring: a set equipped with
an addition and a multiplication satisfying certain axioms. Show that every σ-algebra is a
ring, where addition and multiplication are replaced by symmetric difference and intersection,
respectively.

Exercise 1.1.21. Let Σ be an infinite σ-algebra. Show that Σ has cardinality at least that of
2N, the power set of the natural numbers. (Hint: let Σ0 = Σ. Choose Xn ∈ Σn appropriately
and let Σn+1 = {Y ∈ Σn : Xn ∩ Y = ∅}. If done correctly, you should be able to find an
injective function F : 2N → Σ such that F ({n}) = Xn).

Exercise 1.1.22. Show that the set of half-open intervals [a, b) generates the Borel σ-algebra
of R.

Exercise 1.1.23. Show that the set of compact subsets of Rd generates the Borel σ-algebra
of Rd. Show that there exists a metric space X, such that the set of compact subsets of X
does not generate the Borel σ-algebra of X. (Hint: Cardinality!)

Exercise 1.1.24. Let us say that a bounded subset A of R has Jordan content if the indicator
function 1A of A is Riemann integrable. Here 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.
Show that Q is Borel, but does not have Jordan content. Later we will show that every set
with Jordan content is Borel, and that it is reasonable to define the length of any Borel set.
So our definitions will generalize those that one learned in a first course in real analysis.

1.2 The definition of a measure

We are almost ready to define a measure. Throughout this section, the reader should refer
back to Example 1.0.1 frequently, as the point of the definitions in this section is to generalize
those concepts.

1.2.1. Let (−∞,∞] denote the set of real numbers, plus another point ∞ which is greater
than any real number. We define addition on [0,∞] by requiring that ∞ + a = ∞ for
any a ∈ R. We do not define addition on [−∞,∞], which would include −∞, because the
expression ∞−∞ makes no sense.
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Definition 1.2.2. Let C be a collection of sets. A function µ : C → [0,∞] such that for
every disjoint sequence of sets (Xn)n in Σ such that

⋃
nXn ∈ C,

µ
⋃
n

Xn =
∞∑
n=1

µ(Xn),

is called a σ-additive fuction.

Definition 1.2.3. A measure is a σ-additive function defined on a σ-algebra Σ on a set
X which is not identically ∞. If we wish to emphasize that the codomain of a measure is
[0,∞], we will call it a positive measure.

We call elements of Σ measurable sets and call (X,Σ) a measurable space. If µ is a
measure on Σ, we call (X,Σ, µ) a measured space.

If the image of µ is [0, 1], we say that µ is a probability measure.

Lemma 1.2.4. For any measure µ, µ(∅) = 0.

Proof. Since µ is a measure, there is a measurable set Y such that µ(Y ) 6= ∞. Then
Y = Y ∪ ∅ and Y ∩ ∅ = ∅, so

µ(Y ) = µ(Y ) + µ(∅).

Therefore µ(∅) = 0.

Example 1.2.5. The examples in Example 1.0.1 are σ-additive. However, they are not all
defined on σ-algebras; for example, the union of two boxes

∏
i[ai, bi] is not a box. Counting

measure is defined on the σ-algebra of every subset of X, so counting measure is actually a
measure.

In fact, it is not yet clear that there are any interesting measures other than counting
measure! We’ll have to do a lot of work before we’ll be ready to introduce other examples
of measures.

1.2.6. Recall that if f is a function (say, on a metric space), then f is continuous iff for
every sequence of points (xn),

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
.

We want to define something analogous for measures, so we need to define the “limit” of a
sequence of measurable sets. More precisely, if E1 ⊆ E2 ⊆ E3 ⊆ · · · , we can view

⋃
nEn as

the limit of the sequence (En). Similarly we can define
⋂
nEn to be the limit of the (En) if

E1 ⊇ E2 ⊇ · · · . This allows us to show that measures are “continuous”.

Theorem 1.2.7 (continuity of measure). Let µ be a measure, (En) a sequence of measurable
sets, and E a measurable set. If one of the following is true:

1. Either E1 ⊆ E2 ⊆ E3 ⊆ · · · and E =
⋃
nEn,

2. or E1 ⊇ E2 ⊇ E3 ⊇ · · · , E =
⋂
nEn, and there is n such that µ(En) <∞,
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then
lim
n→∞

µ(En) = µ(E). (1.1)

Proof. We first handle the increasing case. Set F1 = E1 and Fn = En \ En−1. Then
E =

⋃
n Fn and En =

⋃
m≤n Fm, and the Fn are disjoint. So

µ(E) =
∞∑
n=1

µ(Fn) = lim
n→∞

n∑
m=1

µ(Fm) = lim
n→∞

µ(En)

which is (1.1). As for the decreasing case, set Fn = E1 \ En; then the Fn increase to
F = E1 \ E. So

lim
n→∞

µ(E1)− µ(En) = lim
n→∞

µ(Fn) = µ(F ) = µ(E1)− µ(E)

which can be rearranged to give (1.1).

Example 1.2.8. The continuity of measure theorem is sharp in the sense that the hypothesis
in the decreasing case that µ(En) < ∞ cannot be omitted. Consider counting measure µ,
defined on all subsets of N. Let E = ∅, E1 = N, and given the infinite set En, choose the
least element of En and discard it to get an infinite set En+1. Thus µ(En) =∞, but En does
not contain any of 1, . . . , n− 1, so

⋂
nEn = E and µ(E) = 0.

1.2.9. We now introduce an important class of σ-additive functions defined on half-open
intervals in R, known as Stieltjes premeasures6. The idea is that, while the Borel σ-algebra
B is huge, and we have no hope of defining a measure on each Borel set separately – it’s just
way too much information! – we can think of the half-open intervals as “generators” for the
algebra B, and so every Stieltjes will extend uniquely to a measure on B. The analogy here
is to linear algebra: one does not define a linear map T : V → W by what it does to each
individual element of V , but only to a basis of V .

1.2.10. Recall that a function f on an interval I is said to be “left-continuous” if for every
x ∈ I,

f(x) = lim
ε→0+

f(x− ε).

Here the limit is taken over positive ε, and so ignores the behavior of f to the right of
x. Clearly any continuous function is left-continuous. One can also define right-continuous
functions by ignoring the behavior of f to the left of x instead.

Example 1.2.11. The Heaviside step function7

H(x) =

{
0, x ≤ 0

1, x > 0

6Named after Thomas Stieltjes (1856–1894), who introduced the Riemann-Stieltjes integral, a weighted
version of the Riemann integral that inspired the notion of a Stieltjes premeasure.

7Named after Oliver Heaviside (1850–1925), an engineer who introduced an early version of the “distri-
butional calculus” used to solve differential equations. Mathematicians did not consider the distributional
calculus rigorous until the 1950s, however.
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Figure 1.1: The Heaviside function (in blue) and an approximation to its derivative (in
green). As the approximation improves, it converges to 0 everywhere except at the origin,
where it blows up.

is a useful example of a left-continuous function which is not continuous. Clearly the deriva-
tive H ′(x) exists if x 6= 0, and in that case H ′(x) = 0. We want to say that H ′(0) = ∞ in
some suitable sense, and in fact that for any ε > 0,∫ ∞

−∞
H ′(x) dx =

∫ ε

−ε
H ′(x) dx = 1.

Of course we can’t do that, because the limit that would define H ′(0) does not exist. See
Figure ??.

Definition 1.2.12. Let f : R→ R be a nondecreasing, left-continuous function. Define

µf ([a, b)) = f(b)− f(a).

We call µf the Stieltjes premeasure of f .

1.2.13. A nondecreasing function can only be discontinuous on a countable set (Exer-
cise 1.2.18). Thus we can turn a nondecreasing function f into a left-continuous function g
by declaring that if f is continuous at x then g(x) = f(x), and otherwise setting

g(x) = lim
ε→0

f(x− ε).

Henceforth we will talk about Stieltjes premeasures of any nondecreasing function, knowing
that we may have to redefine them on a countable set in order that the definition make sense.

Example 1.2.14. If f(x) = x, then the Stieltjes premeasure of an interval [a, b) under f is
just its length b − a. This premeasure is known as the Lebesgue premeasure. It will be by
far the most important premeasure that we study. If the following theory ever seems too
abstract, try it out on the Lebesgue premeasure!
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Example 1.2.15. The Stieltjes premeasure of a differentiable function f can be thought of
as “weighted length”; µf ([a, b)) > b−a provided that f ′ > 1 on b−a, and µf ([a, b)) < b−a if
f ′ < 1. This is just an expression of the fundamental theorem of calculus: if f is differentiable
then

µf ([a, b)) = f(b)− f(a) =

∫ b

a

f ′(x) dx.

Since f is nondecreasing, f ′ ≥ 0. This is our first clue that there is some connection between
integration and measure theory.

Example 1.2.16. The Stieltjes premeasure of the Heaviside function H will allow us to make
some sense of our previous waffling about its derivative. If 0 /∈ [a, b) then µH([a, b)) = 0.
Otherwise, a ≤ 0 < b and H(b) = 1, H(a) = 0; thus µH([a, b)) = 1. If one instead considers
a finite set X = {x1, . . . , xn} and

f(x) =
n∑
j=1

H(x− xj),

then µf ([a, b)) is the cardinality of X ∩ [a, b).

Theorem 1.2.17. Every Stieltjes premeasure is σ-additive. In particular, Lebesgue pre-
measure is σ-additive.

Proof. Let µf be a Stieltjes premeasure. Let En = [an, bn), assume that the En are disjoint,
and let E =

⋃
nEn. Suppose that E = [a, b). We must show

f(b)− f(a) =
∞∑
n=1

f(bn)− f(an). (1.2)

To do so, we first note that since f is nondecreasing, the quantities µf ([an, bn)) are positive,
so the sum in (1.2) converges absolutely. Thus we may rearrange the order of the summands
without affecting the value of the sum, so we can assume that an ≤ an+1 for every n, by
reordering the intervals En. Since the intervals are disjoint it follows that bn ≤ an+1.

We now prove

µf (E) ≥
∞∑
n=1

µf (En).

To do this, we fix an N and show that

f(b)− f(a) ≥
N∑
n=1

f(bn)− f(an). (1.3)

Now b ≥ bn and a ≤ an, so f(b)− f(a) ≥ f(bN)− f(a1), but

N∑
n=1

f(bn)− f(an) = f(bN)− f(a1) +
N−1∑
n=1

f(bn)− f(an+1).
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But bn ≤ an+1 so f(bn) ≤ f(an+1), so

N−1∑
n=1

f(bn)− f(an+1) ≤ 0.

Therefore
N∑
n=1

f(bn)− f(an) ≤ f(bN)− f(a1) ≤ f(b)− f(a).

This proves (1.3).
Conversely, we must show that

µf (E) ≤
∞∑
n=1

µf (En).

It suffices to show that for every ε > 0,

f(b)− f(a) ≤ ε+
∞∑
n=1

f(bn)− f(an). (1.4)

Now choose b′ < b such that f(b′) ≥ f(b) − ε/2 and for each n choose a′n < an such that
f(a′n) ≥ f(an)− ε/2n+1. Such a′n and b′ exist because f is left-continuous. Now

[a′n, b
′] ⊆ [a, b) =

∞⋃
n=1

[an, bn) ⊆
∞⋃
n=1

(a′n, bn).

Therefore the (a′n, bn) are an open cover of [a′n, b], so by the Heine-Borel theorem there is an
N such that

[a′n, b
′] ⊆

N⋃
n=1

(a′n, bn).

If any interval is superfluous, we now discard it. Then the way we ordered the intervals,
a′n+1 ≤ bn. TODO: Draw a picture. Moreover, a′1 ≤ a and b′ ≤ bN . Then

f(b)− f(a) ≤ f(b′)− f(a) +
ε

2

≤ f(bN)− f(a′1) +
ε

2

≤ f(bN)− f(a′1) +
ε

2
+

N−1∑
n=1

f(bn)− f(a′n+1)

≤ ε

2
+

N∑
n=1

f(bn)− f(a′n)

≤ ε

2
+

N∑
n=1

f(bn)− f(an) +
ε

2n+1

≤ ε+
N∑
n=1

f(bn)− f(an)
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where we used Zeno’s paradox
∞∑
n=1

1

2n
= 1 (1.5)

to sum the geometric series of ε’s. But this estimate is exactly (1.4).

Exercise 1.2.18. Show that a nondecreasing function on R can only be discontinuous on a
countable set.

Exercise 1.2.19. Let Σ be a σ-algebra, and let µ : Σ→ B be a function such that whenever
A1 ⊆ A2 ⊆ A3 ⊆ · · · ,

lim
n→∞

µ(An) = µ

(
∞⋃
n=1

An

)
.

Show that if µ is additive (that is, if A ∩ B = ∅, then µ(A ∪ B) = µ(A) + µ(B)), then µ is
σ-additive.

Exercise 1.2.20. Let F be the vector space of left-continuous, nondecreasing functions and
M the vector space of Stieltjes premeasures. Show that the map f 7→ µf which assigns a
function to its Stieltjes premeasure is a linear map F →M.

1.3 Premeasures and outer measures

Encouraged by the previous section, we now define premeasures in general. Our goal is to
define a σ-additive function that can be extended to a measure in a unique way; thus, to
define a measure, it will suffice to define a premeasure.

Definition 1.3.1. A nonempty set P of subsets of a set X is said to be a semiring8 in X if

1. For every E,F ∈ P , E ∩ F ∈ P 9,

2. There are countably many sets E1, E2, · · · ∈ P such that
⋃
nEn = X, and

3. For every E,F ∈ P , there are G1, . . . , Gm disjoint such that

E \ F =
m⋃
n=1

Gn.

A σ-additive function P → [0,∞] which is not identically ∞ is called a premeasure.

Example 1.3.2. The set of all half-open intervals [a, b) is a semiring, so a Stieltjes premea-
sure is a premeasure.

Lemma 1.3.3. Let P be a semiring and µ a premeasure on P . Then:

8The terminology is inspired by Exercise 1.1.20.
9A nonempty set of subsets of X satisfying just this first condition is sometimes called a π-system,

especially in probability theory.
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1. If E1, . . . , Em ∈ P then there are disjoint F1, . . . , Fn ∈ P such that

((((E1 \ E2) \ E3) \ · · · ) \ Em) =
n⋃
i=1

Fi.

2. µ(∅) = 0.

Proof. Exercise 1.3.17.

Lemma 1.3.4. Let P be a semiring and µ a premeasure on P . Then:

1. If (En)n is a sequence of disjoint sets in P and E ⊇
⋃
nEn, E ∈ P , then

∞∑
n=1

µ(En) ≤ µ(E).

2. If E ⊆ F , E,F ∈ P , then µ(E) ≤ µ(F ).

Proof. We first prove the first claim. By Lemma 1.3.3, there are Fi ∈ P disjoint such that

((((E1 \ E2) \ E3) \ · · · ) \ Em) =
n⋃
i=1

Fi.

In particular, E is the disjoint union of the Ei and Fi. Thus

µ(E) =
∑
i

µ(Ei) +
∑
j

µ(Fj).

But µ is nonnegative so
∑

i µ(Ei) ≥ 0, thus the claim.
The second claim follows from the first in the case n = 1, E1 = F .

1.3.5. The power of Lemma 1.3.4 is that it does not assume that
⋃
En ∈ P .

1.3.6. With these basic properties of premeasures set aside, we now discuss how to extend
a premeasure to a measure. First, we note that while premeasures are σ-additive, they also
have another useful property, called σ-subadditivity.

Definition 1.3.7. Let P be a set of sets. A function µ : P → (−∞,∞] such that for every
sequence of Ei ∈ P , if E ∈ P and E ⊆

⋃
iEi, then

µ(E) ≤
∞∑
i=1

µ(Ei),

is said to be a σ-subadditive function.

Lemma 1.3.8. Every premeasure is σ-subadditive.
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Proof. Suppose that E =
⋃
iEi. By Lemma 1.3.3, we can write

(((Ei \ Ei−1) \ Ei−2) \ · · · \ E1) =

ki⋃
j=1

F j
i

where the F j
i are disjoint, hence

µ(E) = µ(E1) +
∞∑
i=2

ki∑
j=1

µ(F j
i ).

But
⋃
j F

j
i ⊆ Ei so by Lemma 1.3.4,

ki∑
j=1

µ(F j
i ) ≤ µ(Ei).

Thus

µ(E) ≤
∞∑
i=1

µ(Ei)

which was to be shown.

1.3.9. Because premeasures are σ-subadditive, it would be natural to extend them to a σ-
subadditive function defined on a σ-algebra. Actually, since the set 2X of all subsets of X is
already a σ-algebra (Exercise 1.1.19), we might as well take 2X to be our σ-algebra.

Definition 1.3.10. An outer measure on X is a σ-subadditive function ω : 2X → [0,∞]
such that ω(∅) = 0.

1.3.11. It follows from the definition that an outer measure ω is monotone; that is, if E ⊆ F ,
E,F ∈ P , then ω(E) ≤ ω(F ).

1.3.12. Let P be a semiring in X and µ be a premeasure on P . Now that we have made
up our minds to extend µ to an outer measure µ∗ on X, how should we do so? As usual we
turn to the example of the Lebesgue premeasure, so that

µ([a, b)) = b− a

is the length of the half-open intervals [a, b).
Imagine the half-open intervals to be like rulers. If E ⊆ R is a “well-behaved” set, we

expect that we can approximate the length of E by covering E with countably many rulers
[an, bn) and summing up the lengths of the rulers. This will overestimate the length of E,
both because the rulers may overlap and because E ⊆

⋃
n[an, bn) but not conversely. See

Figure ??. But that’s okay: maybe taking the limit as the rulers overestimate the length of
E less and less will get us the correct value of the length of E, which we denote µ∗(E). We
make this waffling more precise in the following definition.
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Figure 1.2: We want to estimate the total length of the blue set E by adding up the lengths
of the rulers. The left side of the nth ruler is an and the right side is bn, so the length of
the nth ruler is bn − an. The rulers overlap and cover some points not in E, so the estimate∑

n bn − an is slightly larger than the length of E.

Definition 1.3.13. Let P be a semiring in X and µ be a premeasure on P . For every
A ⊆ X, define

µ∗(A) = inf
∞∑
n=1

µ(En) (1.6)

where the inf ranges over all sequences of sets (En)n, En ∈ P , such that A ⊆
⋃
nEn. We

call µ∗ the outer measure generated by µ.

Theorem 1.3.14. Let P be a semiring and µ be a premeasure on P . Then the outer measure
µ∗ generated by µ is an outer measure on X and for every E ∈ P , µ∗(E) = µ(E).

Proof. We first note carefully that the infimum in (1.6) is not vacuous; that is, for every
A ⊆ X there exists a sequence of sets (En)n, En ∈ P , such that A ⊆

⋃
nEn. Indeed, since

P is a semiring we can take the En so that
⋃
nEn = X.

Now we check µ∗(∅) = 0. In fact, taking En = ∅ for every n, we have µ∗(∅) ≤
∑

n 0 = 0.

We now must show µ∗(A) = µ(A) when A ∈ P . Clearly µ∗(A) ≤ µ(A). Since µ is
σ-subadditive, for any Ei ∈ P such that A ⊆

⋃
iEi, µ(A) ≤

∑
i µ(Ei), thus µ(A) ≤ µ∗(A).

Finally we show that µ∗ is σ-subadditive. Suppose that

A ⊆
⋃
n

An ⊆ X.

We must show

µ∗(A) ≤
∞∑
n=1

µ∗(An).

Obviously this is true if some µ∗(An) = ∞, so suppose that for every n, µ∗(An) < ∞ and
let ε > 0. By definition of µ∗, there are Ej

i ∈ P such that Ai ⊆
⋃
j E

j
i and

µ∗(Ai) ≥
∞∑
j=1

µ(Ej
i )−

ε

2i
.
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Thus A ⊆
⋃
i,j E

j
i whence

µ∗(A) ≤
∑
i,j

µ(Ej
i ) ≤

∞∑
i,j=1

µ(Ej
i ) ≤

∞∑
i=1

µ∗(Ai) +
ε

2i

≤ ε+
∞∑
i=1

µ∗(Ai).

This was to be shown.

1.3.15. 10 There is a dual approach to the extension of premeasures, introduced by Lebesgue.
He considered not just outer measures but inner measures defined by the relation

µ∗(E) = sup
∞∑
n=1

µ(En)

where the sup ranges over all sequences of En ∈ P such that
⋃
nEn ⊆ P and the En are

disjoint. Then Lebesgue proposed to study the σ-algebra of all sets whose inner and outer
measures agree. Note the asymmetry: for inner measure we need to assume that the En are
disjoint, or else we could “double-count” elements of E. This asymmetry is the origin of
several pathologies that make inner measures difficult to work with, and now this approach
is considered nothing more than a historical footnote.

Example 1.3.16. An example of an oddity of inner measure comes from trying to compute
the inner measure of the set X of irrational numbers in [0, 1]. Let P be the semiring of
intervals with rational endpoints in [0, 1] and let µ be the Stieltjes premeasure on P defined
by µ([a, b)) = b− a. Then µ∗(X) = 1.

To see this, let x ∈ [0, 1]; we will compute µ∗({x}). Let [x]n be a rational number such
that [x]n < x < [x]n + 1/n; thus {x} ⊂ [[x]n, [x]n + 1/n) and so

µ∗({x}) ≤ µ([x]n, [x]n + 1/n) =
1

n

whence µ∗({x}) = 0.
Let (xn)n be an enumeration of the countable set Q ∩ [0, 1]; by σ-subadditity,

µ∗(Q ∩ [0, 1]) ≤
∞∑
n=1

µ∗({xn}) = 0

but X ∪ (Q ∩ [0, 1]) = [0, 1], so

1 = µ([0, 1]) ≤ µ∗(X) + µ∗(Q ∩ [0, 1]) = µ∗(X) + 0.

Therefore µ∗(X) ≥ 1, but X ⊆ [0, 1] so µ∗(X) ≤ 1.
But there are no intervals in P which are contained in X; thus the only element of P

contained in E is ∅, so
µ∗(E) = sup 0 = 0.

Thus this seemingly reasonable way of defining an inner measure fails to measure the set of
irrational numbers.

Exercise 1.3.17. Prove Lemma 1.3.3.
10The rest of this section is an optional historical note.
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1.4 The Carathéodory construction

Carathéodory11 introduced a modern approach that we now consider which avoids the issues
with inner measures. The idea is that, while an outer measure may not be a measure, there
is a canonically defined σ-algebra on which the outer measure will restrict to a measure. The
elements of that σ-algebra will be called measurable sets.

Definition 1.4.1. Let ω be an outer measure on X. An ω-measurable set is a set A ⊆ X
such that for every E ⊆ X,

ω(E) = ω(E ∩ A) + ω(E \ A). (1.7)

We let M(ω denote the set of all ω-measurable sets. In the event that (1.7) holds, we say
that A cleanly divides E, or that (A,E) satisfies the Carathéodory condition.

1.4.2. Since an outer measure ω is subadditive, one already has

ω(E) ≤ ω(E ∩ A) + ω(E \ A)

and so one just has to prove the opposite inequality

ω(E ∩ A) + ω(E \ A) ≤ ω(E) (1.8)

to verify the Carathéodory condition (1.7). We observe that trivially, X is ω-measurable,
since (1.7) says ω(E) = ω(E) + ω(∅) = ω(E) + 0. This also motivates why we assumed
ω(∅) = 0 in the definition of an outer measure.

Definition 1.4.3. Let ω be an outer measure on X. We say that a set Z ⊆ X is ω-null if
ω(Z) = 0. We let N (ω) denote the set of all ω-null sets.

1.4.4. Let ω be an outer measure. Then ∅ is ω-null by definition. If Z is ω-null and A ⊆ Z,
then 0 ≤ ω(A) ≤ ω(Z) = 0 so A is ω-null. Every measure µ is a premeasure and so extends
to an outer measure; thus we may talk about the µ-null sets, which are exactly those sets
E ⊆ X such that there is F ⊇ X with µ(F ) = 0.

Lemma 1.4.5. For every outer measure ω, N (ω) is closed under countable union and
N (ω) ⊆ M(ω). Moreover, if A is ω-measurable and Z is ω-null, then A ∪ Z and A \ Z are
ω-measurable.

Proof. Let Z be ω-null. Then for every E, E ∩ Z is ω-null, so

ω(E ∩ Z) + ω(E \ Z) = 0 + ω(E \ Z) ≤ ω(E),

which verifies Carathéodory’s inequality (1.8). Thus Z is ω-measurable, so N (ω) ⊆ M(ω).
If A cleanly divides E then clearly so do A ∪ Z and A \ Z, so null sets have no effect on
measurability. Countable subadditivity implies that N (ω) is a σ-algebra.

11Constantin Carathéodory (1873–1950), a Greco-German mathematician who started work as an engineer
working on the Asyut dam in Egypt. In addition to his results in measure theory, Carathéodory made
contributions to isoperimetric problems, complex analysis, and thermodynamics.
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1.4.6. The philosophy of measure theory is that null sets don’t matter much. For example,
once we define integration, we will show that if Z is a µ-null set and f is any integrable
function, we will always have ∫

Z

f(x) dµ(x) = 0.

Since they’re harmless, we might as well the null sets throw them in to the class of all
measurable sets; this motivates the following definition. By Lemma 1.4.5, this definition is
not at all a strong assumption.

Definition 1.4.7. Let (X,Σ, µ) be a measured space. If for every measurable set E ∈ Σ
such that µ(E) = 0, every subset of E is Σ-measurable, we say that (X,Σ, µ) is a complete
measured space, or that µ is a complete measure.

Theorem 1.4.8 (Carathéodory). For every outer measure ω on H, M(ω) is a σ-algebra
and the restriction µ = ω|M(ω) is a measure. Furthermore, (X,M(ω), µ) is a complete
measured space.

Proof. We start by checking some closure properties of M(ω).

Lemma 1.4.9. If A1, A2 are ω-measurable sets, then so is A1 \ A2.

Proof. Since E is the disjoint union of the sets E ∩ (A1 ∩A2), E ∩ (A1 \A2), E ∩ (A2 \A1),
and E ∩ (A1 ∪ A2), this follows from the fact that A1 and A2 divide each of the above sets
cleanly. We leave the details as Exercise 1.4.21.

Lemma 1.4.10. If A1, A2 are ω-measurable sets, then so is A1∪A2. Moreover, if A1, A2 are
disjoint and E is any set, then

ω(E ∩ (A1 ∪ A2)) = ω(E ∩ A1) + ω(E ∩ A2).

Proof. Let A = A1 ∪ A2. Taking complements,

A = X \ (X \ A) = (X \ A1) \ A2

which is measurable by Lemma 1.4.9. We leave the rest of the proof as Exercise 1.4.22.

Lemma 1.4.11. Let E ⊆ X be any set and let A =
⋃
n be a countable disjoint union of

ω-measurable sets. Then
ω(A ∩ E) =

∑
n

ω(An ∩ E).

Proof. By induction on k and Lemma 1.4.10, Bk =
⋃
n<k An is ω-measurable and

ω(Bk ∩ E) =
∑
n<k

ω(An ∩ E).

Since ω is monotone and Bk ⊆ A,

ω(A ∩ E) ≥ µ∗(Bk ∩ E).
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Thus, by σ-subadditivity,

ω(A ∩ E) ≥ lim
k→∞

ω(Bk ∩ E) =
∑
n

ω(An ∩ E) ≥ ω(A ∩ E).

Thus ω(A ∩ E) ≤
∑

n ω(An ∩ E) ≤ ω(A ∩ E), which is what we were meant to show.

By Lemma 1.4.11 applied with E = X, µ = ω|M(ω) is σ-additive. If µ(E) = 0 then
every F ⊆ E lies in the hereditary set N (ω), so F is measurable by Lemma 1.4.5. Therefore,
if M(ω) is a σ-algebra, then (X,M(ω), µ) is a complete measured space. By Lemma 1.4.9,
we just need to check that M(ω) is closed under countable union.

Let A =
⋃
nAn be a countable union of measurable sets. Replacing An with An \ (A1 ∪

· · · ∪An−1) and using closure under complements (Lemma 1.4.9) it is no loss to assume that
the An are disjoint. Then by Lemma 1.4.10, for every set E ⊆ X,∑

n

ω(E ∩ An) + ω(E \ A) ≤ ω(E). (1.9)

We leave the details as Exercise 1.4.23. But we also have ω(E) ≤
∑

n ω(E ∩An) + ω(E \A)
by σ-subadditivity. Since E was arbitrary, A ∈M(ω).

1.4.12. A priori, Carathéodory’s theorem is not actually very useful. We have not established
any control on when Carathéodory’s inequality (1.8) is true, so we do not know which sets
are ω-measurable. For all we know, it could always be the case that M(ω) is the trivial
σ-algebra M(ω) = {∅, X}.

Fortunately, this turns out to not be the case. If ω is an outer measure which is generated
by a premeasure µ on a semiring P , then every subset of P is measurable, as we now show.
(For example, if P is the semiring of half-open intervals, then every Borel set will be ω-
measurable.) Furthermore, if µ is “not too big” in a sense that we will shortly make precise,
then the measure obtained from Carathéodory’s theorem is the unique extension of µ to
a complete measured space. Thus, to specify a measure, which in general is a horribly
complicated object, we just need to give a premeasure defined on some semiring.

Theorem 1.4.13. Let P a semiring in X and let µ be a premeasure on P . Then there is a
σ-algebra Σ which contains P and an extension of µ to a complete measure on Σ.

Proof. Let ω be the outer measure generated by µ and let Σ =M(ω),. Then (X,Σ, ω|Σ) is
a complete measured space, and by Theorem 1.3.14, ω|P = µ.

Suppose that A ∈ P and E ⊆ X. We must verify Carathéodory’s inequality (1.8) in order
to show A ∈ Σ. If ω(E) = ∞ then clearly (1.8) holds. Otherwise, suppose that ω(E) < ∞
and ε > 0; we will show

ω(E ∩ A) + ω(E \ A) ≤ ω(A) + ε. (1.10)

Since the infimum in (1.6) is not vacuous (since P is a semiring), the definition of ω
implies that there exist countably many sets Fn ∈ P such that E ⊆

⋃
n Fn and∑

n

µ0(Fn) ≤ ε+ ω(E). (1.11)
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But Fn = (A ∩ Fn) ∪ (Fn \A), a disjoint union, so since P is a semiring, there exist disjoint
Gij ∈ P such that

Fi = (A ∩ Fi) ∪
ki⋃
j=1

Gij.

Then ∑
i

µ(Fi) =
∑
i

µ(A ∩ Fi) +
∑
i

ki∑
j=1

µ(Gij).

Since Fi \ A =
⋃
j≤ki Gij and E \ A ⊆

⋃
i Fi \ A,

E \ A ⊆
⋃
i

ki⋃
j=1

Gij.

Combining this inequality with the inequality A ∩ E ⊆
⋃
iA ∩ Fi and the inequality (1.11),

we conclude

ω(E ∩ A) + ω(E \ A) ≤
∞∑
i=1

ω(Fi ∩ A) +

ki∑
j=1

ω(Gij) =
∞∑
i=1

ω(Fi) ≤ ω(A) + ε

which implies (1.10).

1.4.14. Now let us show that the complete measured space in Theorem 1.4.13 is unique,
subject to the following assumption.

Definition 1.4.15. Let µ : Σ→ [0,∞] be a measure, premeasure, or outer measure. We say
that µ is σ-finite if there are countably many En ∈ Σ such that

⋃
nEn = X and µ(En) <∞.

1.4.16. “Most” measures that one encounters in practice will be σ-finite, and pathological
counterexamples can often be found by considering non-σ-finite measures. As we shall see,
non-σ-finite premeasures may not extend uniquely; much later on we will show, among other
thing, that for non-σ-finite measures, the familiar formula∫

X

∫
Y

f(x, y) dµ(x) dν(y) =

∫
Y

∫
X

f(x, y) dν(y) dµ(x)

that one learns in calculus is false.
One can think of measure theory as a generalization of combinatorics, since the counting

measure µ on a set X satisfies µ(E) = cardE for every finite set E ⊆ X. Thus σ-finite
measures can be viewed as a generalization of countable sets, and the fact that non-σ-finite
measures are pathological is analogous to the fact that in combinatorics, uncountable sets
are complicated and need an additional theory of “infinitary combinatorics”.

Theorem 1.4.17. Let P a semiring in X and let µ0 be a σ-finite premeasure on P . Then
there is a unique complete measured space (X,Σ, µ) such that P ⊆ Σ and µ|P = µ0.
Furthermore, µ is σ-finite and Σ is the smallest σ-algebra containing P and every µ-null set.
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Proof. By Theorem 1.4.13, (X,Σ, µ) exists. Moreover, µ is still σ-finite, since if we have
countably many sets En for which µ0(En) < ∞ and

⋃
nEn = X, then the same holds with

µ0 replaced with µ.
We now show must uniqueness, so let (X,Γ, ν) be another complete measured space such

that P ⊆ Γ and ν|P = µ0.

Definition 1.4.18. Let X be a topological space. A Borel measure on X is a measure
Σ→ [0,∞] such that every Borel subset of X is an element of Σ.

Theorem 1.4.19. Every Stieltjes premeasure extends uniquely to a complete σ-finite Borel
measure on R.

Proof. Let µ0 be the Stieltjes premeasure of an increasing right-continuous function f ; then
µ0([n, n+ 1)) = f(n+ 1)− f(n) <∞, and the [n, n+ 1), n ∈ Z, are a countable set of sets
which cover R. Therefore µ0 is σ-finite. So, by Theorem 1.4.17, µ0 extends uniquely to a
complete σ-finite measure on a σ-algebra Σ which contains every half-open interval. But the
half-open intervals generate the Borel σ-algebra of R (Exercise 1.1.22), so Σ contains every
Borel subset of R.

Definition 1.4.20. A Stieltjes measure is the unique complete Borel measure that extends
a Stieltjes premeasure.

Exercise 1.4.21. Complete the proof of Lemma 1.4.9.

Exercise 1.4.22. Complete the proof of Lemma 1.4.10.

Exercise 1.4.23. Complete the proof of (1.9).

Exercise 1.4.24. Let µ be the Lebesgue premeasure, µ([a, b)) = b− a, and let Z ⊆ R be a
countable set. Show that Z is µ∗-null.

Exercise 1.4.25. Let (X,Σ, µ) be a measured space. Show that the following are equivalent:

1. µ is σ-finite.

2. There are countably many disjoint Ei ∈ Σ, µ(Ei) <∞, such that
⋃
iEi = X.

3. There are countably many Ei ∈ Σ, µ(Ei) <∞, such that Ei ⊆ Ei+1 and
⋃
iEi = X.

These equivalences are highly useful and will be used throughout the text without explicit
mention.

Exercise 1.4.26. Let (X,Σ, µ) be a measured space, and let N be the set of all µ-null sets.
Let Σ be the σ-algebra generated by Σ and N . Show that there is a unique extension µ of µ
to (X,Σ), and that (X,Σ, µ) is a complete measured space. We call (X,Σ, µ) the completion
of (X,Σ, µ).
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1.5 Lebesgue measure on R
In this section we define the most important measure of all: Lebesgue measure on R.

Definition 1.5.1. The Stieltjes measure arising from a nondecreasing left-continuous func-
tion f is the complete Borel measure µf obtained from the Stieltjes premeasure of f .

Lemma 1.5.2. If µf is a Stieltjes measure then for every open interval (α, β) one has

µf ((α, β)) = f(β)− lim
n→∞

f(α + 1/n).

In particular, if f is continuous then µf ((α, β)) = f(β)− f(α).

Proof. By continuity of measure,

µf ((α, β)) = lim
n→∞

µf ([α + 1/n, β)) = lim
n→∞

f(β)− f(α + 1/n)

which is what we wanted.

1.5.3. In particular, if f(x) = x, then µf ((α, β)) = β − α. This fact will be used so often
that we will frequently use it without reference.

Definition 1.5.4. The Lebesgue measure on R is the Stieltjes measure arising from the
Lebesgue premeasure; that is, the Lebesgue measure is µf where f(x) = x.

1.5.5. Let µ denote Lebesgue measure; then µ([α, β)) = β − α is the length of the interval
[α, β). Therefore µ is the natural generalization of “length” to as many subsets of R as one
reasonably can generalize it to. Indeed, if A is a Lebesgue measurable subset of R (e.g. if A
is Borel) then

µ(A) = inf

{
∞∑
j=1

βi − αi : A ⊆
∞⋃
i=1

[αi, βi)

}
. (1.12)

Theorem 1.5.6. Lebesgue measure µ is translation-invariant in the sense that if A is a
Lebesgue measurable set, and A+ x = {a+ x : a ∈ A}, then µ(A) = µ(A+ x). Conversely,
if ν is a translation-invariant complete Borel measure such that ν([0, 1)) = 1, then µ = ν.

Proof. If A = [α, β) is an interval, then µ(A + x) = β + x− α − x = β − α = µ(A). If A is
an arbitrary measurable set, then by (1.12),

µ(A+ x) = inf

{
∞∑
j=1

βi − αi : A+ x ⊆
∞⋃
i=1

[αi, βi)

}

= inf

{
∞∑
j=1

βi + x− αi − x : A ⊆
∞⋃
i=1

[αi, βi)

}

= inf

{
∞∑
j=1

βi − αi : A ⊆
∞⋃
i=1

[αi, βi)

}
= µ(A).
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Conversely, ν is σ-finite, since by translation invariance, the sets [n, n + 1) all have ν-
measure 1, there are countably many of them, and they cover R. Now if [α, β) is an arbitrary
interval, we can write

[α, β) =
⋃
n∈Z

[α, β) ∩ [n, n+ 1)

and use countable additivity to see that

ν([α, β)) =
∑
n∈Z

ν([α, β) ∩ [n, n+ 1)).

So it suffices to show that ν([α, β)) = µ([α, β)) whenever [α, β) ⊆ [n, n + 1) for some n, in
order that this also be true for any interval [α, β). Then by translation invariance, it suffices
to check this when α = 0, in which case β ∈ (0, 1).

Suppose first that β is rational, say β = p/q. Then by translation invariance and count-
able additivity,

ν([α, β)) = ν([0, p/q)) =

p−1∑
j=0

ν([j, (j + 1)/q)) = pν([0, 1/q)).

But

1 = ν([0, 1)) =

q−1∑
j=0

ν([j, (j + 1)/q)) = qν([0, 1/q))

which implies that ν([0, 1/q)) = 1/q and hence ν([0, p/q)) = p/q; therefore ν([α, β)) = β−α
whenever β−α is rational. If β−α is irrational, choose βn > βn+1 > · · · > β so that βn → β
and βn − α is rational for all n; then ν([α, βn)) = βn − α, so continuity of measure implies
that ν([α, β)) = β − α.

Since µ([α, β)) = ν([α, β)) for all α < β, uniqueness of the Carathéodory construction
for σ-finite measures implies that µ = ν.

1.5.7. The above argument is an example of a “bootstrapping” strategy that is common
in measure theory. Once one has established a simple case (here ν([0, 1)) = 1), it is often
possible to propagate that case to a slightly more complicated case (ν([0, 1/q)) = 1/q, say),
and then repeat this process until all sets of interest have been considered. If you find
yourself stuck on an exercise, it is worth trying to prove the claim in the simplest possible
case and then iteratively improving the cases your proof works for until all cases are hit.

1.5.8. Theorem 1.5.6 shows that we could have defined Lebesgue measure axiomatically. We
would have had to demanded that:

1. Countable additivity: Lebesgue measure be a measure.

2. Borel: Every open interval be Lebesgue measurable.

3. Completeness: Every subset of a Lebesgue null set be null.

4. Translation-invariance: A translate of a Lebesgue measurable set have the same Lebesgue
measurable.
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5. Calibration: The interval [0, 1) have Lebesgue measure 1.

Certainly all of these conditions seem quite tame; then the Carathéodory construction would
have proven existence and uniqueness. However, it is convenient to pass through the notion
of a Stieltjes measure along the way, as more general Stieltjes measures are quite useful in
their own right.

1.5.9. One may wonder if every subset of R is Lebesgue measurable. Under certain rea-
sonable set-theoretic hypotheses, this is false; we discuss a counterexample, Vitali’s set, in
Theorem 2.5.5. But the next-best thing is true, as any set that an analyst, algebraist, topol-
ogist, or applied mathematician will ever have to work with will turn out to be measurable.
We discuss this in Example 3.3.18. This is closely related to a theorem of Solovay [Sol70]
which shows that in a certain sense, those set-theoretic hypotheses cannot be avoided in the
construction of a nonmeasurable set: a slightly different logical setup would imply that every
subset of R is measurable.

1.5.10. Lebesgue measure is remarkably well-behaved, along with satisfying the five axioms
above. To see an example of another good property of Lebesgue measure, we need a new
definition. If the reader is uncomfortable with the abstract definition of a locally compact
Hausdorff space, they may take X = R in the following definition without losing any insight.

Definition 1.5.11. Let X be a locally compact Hausdorff space. Suppose that µ is a Borel
measure on X such that:

1. Outer regularity : For every Borel set W ,

µ(W ) = inf
U
µ(U)

where the infimum is taken over all open sets U ⊇ W .

2. Inner regularity for open sets : For every open set U ,

µ(U) = sup
K
µ(K)

where the supremum is taken over all compact sets K ⊆ U .

3. Local finiteness : For every compact set K, µ(K) <∞.

Then we say that µ is a Radon measure.

Theorem 1.5.12. Every Stieltjes measure on R is Radon. In particular, Lebesgue measure
is Radon.

Proof. Let f be a nondecreasing left-continuous function. IfK is compact thenK is bounded,
so K is contained in an interval [α, β) so µf (K) ≤ f(β)−f(α). Therefore µf is locally finite.

For inner regularity, note that every open set U can be written as a disjoint union of
countably many open intervals, so it suffices to check when U is the interval (α, β). Now
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if K ⊂ (α, β) is compact then there is an n such that K ⊆ [α + 1/n, β), so µf (K) ≤
f(β)− f(α + 1/n). On the other hand,

lim
n→∞

µf ([α + 1/n, β)) = f(β)− lim
n→∞

f(α + 1/n) = µf ((α, β)).

Therefore µf is inner regular.
For outer regularity, let W be a Borel set (actually, any Stieltjes measurable set); then

µ(W ) = inf
(αn),(βn)

∑
n

f(βn)− f(αn)

where the inf ranges over all sequences of αn and βn such that W ⊆
⋃
n[αn, βn). Fix any

such sequences. Now En
m = (αn −m−12−n, βn) is an open cover of W for any m, so

µ(W ) ≤
∑
n

f(βn)− f(αn) <
1

m
+
∑
n

f(βn)− f(αn) =
∑
n

f(βn)− f(αn) +m−12−n.

Taking m→∞ and minimizing
∑

n f(βn)− f(αn) by varying the αn and βn we collapse the
above inequalities into infs.

1.5.13. The proof of Theorem 1.5.12 shows that Stieltjes measures are not just outer regular
for Borel sets, but outer regular for any Stieltjes measurable set whatsoever. However, this
fact is rarely useful; as discussed below, we are mainly interested in equivalence classes of sets
modulo null sets, and every Lebesgue measurable set is equivalent under that equivalence
relation to a Borel set.

1.5.14. After this chapter, we will mainly be interested in not measurable sets, but rather
equivalence classes of measurable sets under the equivalence relation “symmetric difference
is a null set”. That is, we think of two measurable sets A,B as the same if the symmetric
difference A∆B = (A \B)∪ (B \A) is null. For example, every countable set is the same as
the empty set. One can give a different construction of the Lebesgue measure if one is only
interested in equivalence classes of measurable sets, rather than measurable sets themselves;
see Exercises 1.5.25 through 1.5.27.

1.5.15. Let us now construct a useful example of an uncountable, null compact set, known
as the standard Cantor set . This set will frequently be useful as an example, and will be
treated at length in the exercises.

Let C0 = [0, 1], and given Cn a finite union of closed intervals, let Cn+1 consist of Cn with
the open middle-thirds of each interval in Cn removed. See Figure ??. Let C, the standard
Cantor set, be defined by C =

⋂
nCn.

1.5.16. It is often convenient to view the Cantor set in the following way. Let 2 be a
shorthand for the set {0, 1}. Let 2ω denote the space of sequences in 2, thus 2ω is the set of
all functions N→ {0, 1}.

For each x ∈ 2ω, we obtain a point f(x) ∈ C in the following way. Assume that Dn−1 is
one of the closed intervals obtained in stage n− 1 of the Cantor set construction, thus Dn−1

is an interval in Cn−1. If xn = 0, let Dn be the left closed interval in Dn−1, and otherwise
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Figure 1.3: The sets C0, . . . , C4 used in the construction of the Cantor set.

let Dn be the right closed interval. Then Dn ⊆ Dn−1 ∩ Cn. The intersection of closed
nonempty intervals is a closed nonempty interval, so we obtain such an interval D ⊆ C. But
a consequence of Exercise 1.5.20 is that the Cantor set contains no nontrivial intervals, so
D consists of a single point f(x).

The map f is injective since if f(x) = f(y) then, at the nth stage of the Cantor set
construction, both x and y agreed on which subinterval to pass to, thus x = y. It is
surjective since every point p ∈ C must be in some interval Dn at stage n, and if Dn is the
left interval of Dn−1 then we can set x = 0, and otherwise set x = 1; then f(x) = p. One
can similarly interpret the Cantor set as the set of all paths through the full infinite binary
tree. This perspective can be highly useful in some exercises and in applications. For more
on Cantor sets, see Pugh [Pug13, Chapter 2].

Exercise 1.5.17. Let x ∈ R and let f be a nondecreasing, left-continuous function. Show
that

µf ({x}) = lim
ε→0

f(x+ ε)− f(x).

Conclude that if f is continuous, then µf makes all countable sets null.

Exercise 1.5.18. Let f be a nondecreasing, left-continuous function. Show that there is a
nonempty open set U such that µf (U) = 0 iff f is not strictly increasing (i.e. there are x < y
with f(x) = f(y)).

Exercise 1.5.19. Let x ∈ R. The Dirac measure at x, denoted δx, is the Stieltjes measure
arising from the function

y 7→

{
0, y ≤ x

1, y > x.

A set is Dirac measurable at x if it is measurable with respect to δx. Show that every subset
of R is Dirac measurable at x, and compute its Dirac measure.

Exercise 1.5.20. Show that the standard Cantor set is compact and Lebesgue null, has the
same cardinality as R, and contains no interval except for points and the empty set.
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Exercise 1.5.21. Let µ denote Lebesgue measure on R. Show that there is a Borel proba-
bility measure ν on R, such that for every countable set A, ν(A) = 0, and if µ(A) > 0, then
ν(A) = 0. (Hint: Define ν in such a way that, if C denotes the standard Cantor set, then
ν(C) = 1, and use Exercise 1.5.20.)

Exercise 1.5.22. Show that the set of Lebesgue measurable subsets of R has cardinality
equal to that of the power set 2R of R. Conclude that there exists a Lebesgue measurable
set which is not Borel. (Hint: Exercise 1.5.20.)

Exercise 1.5.23. Show that for every α ∈ [0, 1) there exists a Cantoresque subset Cα of
[0, 1] whose Lebesgue measure is α. In particular, Cα should be compact and contain no
open subset of R. This is known as a fat Cantor set . Show that there does not exist a fat
Cantor set of measure 1 in [0, 1].

Exercise 1.5.24. Show that every locally finite Borel measure on R is Stieltjes (and hence
Radon).

Exercise 1.5.25. In this exercise and the following we give a different construction of
Lebesgue measure, other than the axiomatic definition or the construction using Stieltjes
measures.

Let Σ0 be the set of all intervals (open, closed, or half-open) with rational endpoints.
Given I ∈ Σ0, define ν(I) to be the length of I. If I, J ∈ Σ0, then I \ J ∈ Σ0, so we can
define

d0(I, J) = ν(I \ J) + ν(J \ I).

Show that d0 is a semimetric, so the completion (Σ, d) of (Σ0, d0) is a complete metric space,
and ν is a continuous function on Σ.

Show that the “union” of countably many elements of Σ is well-defined, as is the “in-
tersection” of countably many elements and “complement” of one element. That is, show
that these operations drop to equivalence classes of elements of Σ0 under the equivalence
relation “distance is 0”, and then extend uniquely to Σ. So Σ can be thought of as an
“abstract σ-algebra” in some sense, even though its elements are not sets, but something
more abstract.

Exercise 1.5.26. Let all definitions be as Exercise 1.5.25. Given J ∈ Σ0, define [J ] to be
the equivalence class of J in Σ. Then, given I ∈ Σ, let

ν(I) = d(I, [∅]).

Show that ν is “σ-additive” in the sense that whenever (En)n is a sequence in Σ with
En ∩ Em = [∅] whenever n 6= m, then

ν

(⋃
n

En

)
=
∑
n

ν(En).

So we can think of ν as an “abstract measure” on the abstract σ-algebra Σ. We call ν the
physical Lebesgue measure.
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Exercise 1.5.27. Let µ be Lebesgue measure and ν physical Lebesgue measure as in Ex-
ercise 1.5.26, defined on the abstract σ-algebra Σ. Let Γ be the σ-algebra of Lebesgue
measurable subsets of R. Show that there is a surjective map π : Γ→ Σ such that:

1. For every rational interval I, π(I) is the equivalence class of I in Σ.

2. For every sequence (En)n in Γ, π(
⋃
nEn) =

⋃
n π(En), and similarly for intersection

and complement.

3. For every E ∈ Γ, µ(E) = ν(π(E)).

So we can think of π(E) as the equivalence class of E under the equivalence relation “sym-
metric difference is null”, and ν correctly computes the Lebesgue measurable of a set.

1.6 Vector-valued measures

Recall that by definition, a measure µ is a σ-additive function µ : Σ → (−∞,∞], where Σ
is a σ-algebra. However, the definition of σ-additive function makes sense even if (−∞,∞]
is replaced by a more general codomain, and we will have use for this when we integrate
functions in more general codomains than the real numbers.

1.6.1. Let B be a Banach space, as discussed in Appendix A.2. If the reader is unfamiliar
with Banach spaces, they can take B = Cd and not lose any insight. If (xn) is a sequence in
B, then (A.3) is the definition of the infinite sum

∑
n xn.

Definition 1.6.2. Let Σ be a σ-ring and B a Banach space. A vector-valued measure on Σ,
or simply a measure, is a function µ : Σ→ B such that whenever (En) are countably many
disjoint sets in Σ,

µ

(⋃
n

En

)
=
∑
n

µ(En).

Example 1.6.3. The most important examples of vector-valued measures will be of the
following form. Let ν be a positive measure on a measurable space X, and let f : X → B
be an “integrable function”. We will get back to what this means later — but, taking the
definition of integration as a black box, set

µ(E) =

∫
E

f(x) dν(x).

Then µ is a vector-valued measure, and its “derivative” is f . This will be the setting in
which we generalize the fundamental theorem of calculus.

1.6.4. Frequently, positive measures are easier to work with than vector-valued measures, so
we will mainly spend this section developing tools to convert problems about vector-valued
measures into problems about positive measures.
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Definition 1.6.5. Let µ be a measure. The total variation measure |µ| of µ is defined by

|µ|(E) = sup
E1,...,En

n∑
i=1

||µ(Ei)||B

where the supremum ranges over finite sequences E1, . . . , En of disjoint measurable sets such
that E =

⋃
iEi.

Theorem 1.6.6. Every total variation measure is a positive measure.

Proof. Let µ be a measure. Then |µ| is nonnegative. If E ⊆ F are measurable sets, write
F = E ∪ (F \ E) to see that |µ|(E) ≤ |µ|(F ).

To see that |µ| is σ-additive, suppose that F,G are disjoint measurable sets, E = F ∪G.
Write F =

⋃
i≤m Fi and G =

⋃
j≤nGj where the Fi, Gj are all disjoint; then

|µ|(E) ≥
m∑
i=1

||µ(Fi)||B +
n∑
j=1

||µ(Gj)||B.

Thus |µ|(E) ≥ |µ|(F ) + |µ|(G), so by induction if E =
⋃
i≤mEi where the Ei are disjoint,

then |µ|(E) ≥
∑

i≤m |µ|(Ei). Using the monotonicity, it follows that if (Ei) is a disjoint
countable sequence of sets and E =

⋃
iEi, then

|µ|(E) ≥
∞∑
i=1

|µ|(Ei).

Conversely, suppose that E =
⋃
j Ej =

⋃
i≤n Fi where (Ej) is a disjoint countable se-

quence and (Fi) is a disjoint finite sequence. Then

n∑
i=1

||µ(Fi)||B =
n∑
i=1

∣∣∣∣∣
∣∣∣∣∣µ
(
∞⋃
j=1

(Fi ∩ Ej)

)∣∣∣∣∣
∣∣∣∣∣
B

≤
n∑
i=1

∞∑
j=1

||µ(Fi ∩ Ej)||B

=
∞∑
j=1

n∑
i=1

||µ(Fi ∩ Ej)||B ≤
∞∑
j=1

|µ|(Ej).

Here we used the fact that Ej =
⋃
i≤n Fi ∩ Ej. It follows that |µ|(E) ≤

∑∞
i=1 |µ|(Ei).

Theorem 1.6.7 (triangle inequality and reverse triangle inequality). Let µ, ν be measures
on Σ with values in B. Then |µ+ ν| ≤ |µ|+ |ν| and

||µ|(E)− |ν|(E)| ≤ |µ− ν|(E).

Proof. If E =
⋃
i≤nEi, the Ei disjoint, then

n∑
i=1

||(µ+ ν)(Ei)||B ≤
n∑
i=1

||µ(Ei)||B + ||ν(Ei)||B ≤ |µ|(E) + |ν|(E)

which implies the two desired inequalities.
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1.6.8. Let µ be a vector-valued measure. The total variation measure |µ| can be viewed
as the positive measure that “best dominates” ||µ||B in the sense that for every measurable
set E, |µ(E)| ≥ ||µ(E)||B. On the other hand, if µ is already a positive measure, then the
definition of the total variation measure |µ| still makes sense, and additivity of µ implies
that µ = |µ|. Thus we can use total variation to extend definitions of measures to this more
general setting.

Definition 1.6.9. A vector-valued measure µ is σ-finite if |µ| is σ-finite. A set E is µ-null
if E is |µ|(E)-null. The measure µ is a complete measure if every µ-null set is complete.
The completion of µ is the vector-valued measure obtained by extending the domain of µ to
contain all µ-null sets.

TODO:Hanh-Jordan

Exercise 1.6.10. Show that the completion of a vector-valued measure is well-defined. That
is, if (X,Γ) is a measurable space and µ is a vector-valued measure on Γ, then show that
there is a σ-algebra Σ on X which contains every measurable set and every µ-null set, such
that (X,Σ, µ) is a complete measured space.

Exercise 1.6.11. Give an example of a vector-valued measured space (X,µ) such that
µ(X) = 0, but |µ| is not identically zero. Thus, explain why we cannot define a µ-null set
to simply be a set E such that µ(E) = 0.



Chapter 2

Examples and applications

Most of this chapter is optional; sometimes the first two sections will be useful in later
chapters, but the later sections will only be used in motivational sections, exercises, and
examples. The point here is to bring the level of abstraction down and show what one can
do with all the machinery that we built up last chapter.

2.1 Measurable maps

In topology, a continuous map is one that pulls back open sets to open sets. Here we have
no open sets to work with — only measurable sets — but this turns out to be exactly what
we want.

Definition 2.1.1. Let (X,Σ) and (Y,Γ) be measurable spaces. A measurable map f : X →
Y is a map such that for every measurable set A ∈ Γ, f−1(A) is measurable.

A measurable isomorphism is a measurable map f : X → Y such that f is a bijection
and f−1 is measurable. If a measurable isomorphism exists, we say that X, Y are isomorphic
as measurable spaces, or that Σ and Γ are isomorphic as σ-algebras.

Example 2.1.2. Isomorphism of measurable spaces is a very weak notion. If X is an
uncountable Polish space — a complete separate metric space — then we call its Borel σ-
algebra Σ the standard Borel algebra. A theorem of a branch of logic known as descriptive
set theory implies that there is only one standard Borel algebra, up to isomorphism. So any
two Polish spaces, when viewed as measurable spaces, are the same!

Definition 2.1.3. Let (X,Σ, µ) be a measured space, (Y,Γ) a measurable space, and f :
X → Y a measurable map. We define f∗(µ) on (Y,Γ) by

f∗(µ)(E) = µ(f−1(E))

and call f∗(µ) the pushforward measure of µ by f .

Example 2.1.4. Let T be the circle, viewed for now as the set {z ∈ C : |z| = 1}. Then T
has its Borel σ-algebra Γ. Let Σ be the Borel Σ-algebra of R and µ the Lebesgue measure
restricted to Σ. Then we have a continuous map f : [0, 1]→ T defined by

f(x) = e2πix.

35
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Every continuous map between Borel measurable spaces is measurable, so f is. The push-
forward measure ν = f∗(µ) is known as the Lebesgue measure on T. The diligent reader will
check that ν agrees with the notion of arc length defined in multivariable calculus (Exer-
cise 2.1.9).

Definition 2.1.5. Let (X,µ) and (Y, ν) be measured spaces. A measure-preserving map is
a measurable map f : X → Y such that

ν = f∗(µ).

If f is a measurable isomorphism, we call f a measure-preserving isomorphism.

Definition 2.1.6. Let X be a set, (Y,Γ) a measurable space, and F : X → Y a map. The
pullback σ-algebra F ∗Γ is the σ-algebra of sets of the form F−1(A) where A ∈ Γ.

2.1.7. We need to check that the definition of a pullback σ-algebra makes sense. Namely,
we must show that if F : X → Y is a map, and Γ a σ-algebra on Y , then F ∗Γ is a σ-algebra.
This is part of the content of Exercise 2.1.10, which also shows that F ∗Γ is the smallest
σ-algebra for which F is measurable.

Exercise 2.1.8. Show that measurable spaces with measurable maps form a category.

Exercise 2.1.9. By an arc we mean a compact connected subset of T. Recall the definition
of the length of an arc from calculus. Show that the length of an arc equals its Lebesgue
measure.

Exercise 2.1.10. Let F : X → Y be a map, Γ a σ-algebra on Y . Show that F ∗Γ is a
σ-algebra on X and F : (X,F ∗Γ)→ (Y,Γ) is measurable. Conversely, show that F ∗Γ is the
intersection of all σ-algebras Σ on X such that F : (X,Σ)→ (Y,Γ) is measurable.

2.2 Probability

In 1933, Andrey Kolmogorov put probability theory — which was long viewed as not part
of rigorous mathematics — on a sound footing by establishing three axioms that probability
theory ought to satisfy. These axioms, however, are exactly the definition of a probability
measure! Thus measure theory is an invaluable tool in applied mathematics, such as statis-
tics. However, even the myopic reader who only cares about pure, abstract mathematics will
find probability useful to their work.

In this section we do little more than develop a language, but in later sections we will
find a great use for it.

Definition 2.2.1. A probability space (Ω,Σ, P ) is a measure space with P (Ω) = 1. Elements
of Σ are called events and elements of X are called outcomes . The quantity P (A), where A
is an event, is called the probability that A is true.

2.2.2. The intuition here is that the events form an algebra Σ of statements that could be
true or false about the world, with varying probabilities. By an algebra of statements, more
precisely, one means that it is meaningful to conjoin them using grammar: A ∪ B is the
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event that A happens or B happens, while A ∩ B is the probability that both A happens
and B happens. The event Ω \A is the probability that A does not happen, and so on. The
event Ω is vacuously true; it represents the statement “2 + 2 = 4”. The event ∅, on the other
hand, is vacuously false; it represents the statement “2 + 2 = 5”. Thus probability theory
sits somewhere between analysis and logic in the world of mathematics, and the language
used in the following definition is motivated.

Definition 2.2.3. Let (Ω,Σ, P ) be a probability space.
The event A ∪ B is called A or B, or the disjunction of A,B, and the event A ∩ B is

called A and B, or the conjunction of A,B. The event Ω\A is called not A, or the negation
of A.

The event Ω is said to be true, and the negation ∅ of true is said to be false. An event
A is said to be almost surely true if P (A) = 1, and almost surely false if P (A) = 0.

A set Σ0 ⊆ Σ of events is said to be mutually exclusive if for every A,B ∈ Σ0, A ∩ B is
almost surely false.

2.2.4. The σ-additivity of the measure P says that if a countable set Σ0 of events is mutually
exclusive, its disjunction A satisfies

P (A) =
∑
B∈Σ0

P (B),

thus for example we have the inclusion-exclusion formula

P (E ∪ F ) = P (E) + P (F )− P (E ∪ F )

valid for any two events E,F familiar from elementary probability theory.

2.2.5. So far we have only discussed events. But what role do outcomes play? Outcomes
are “microstates” and each outcome carries all possible information about a particular state
that the universe could be — the position and momentum of every last molecule, the value
of every card in every player’s hand. But we are just puny mortal observers of the universe;
we cannot possibly have access to all that information! So outcomes are not terribly useful,
and one generally avoids ever mentioning outcomes directly. What we mortal observers can
observe are random variables.

Definition 2.2.6. Let (Ω, P ) be a probability space and E be a measurable space. A random
variable of type E, also known as an observable of type E, is a measurable map Ω→ E.

2.2.7. The points of the space E represent possible values that an experiment can return.
The random variable X : Ω→ E represents an experiment. If ω is an outcome, X(ω) is the
result of the experiment X if the universe is in state ω. One generally takes E = R with its
Borel σ-algebra, since most experiments return numerical data, but there are other examples
of useful types E; for example, points of E are often sequences, vectors, or graphs. If the
type of X is clear — especially if it is R — we will suppress it.

2.2.8. Let X be a random variable (of type R). The sets [x,∞) are Borel, so the sets
{X ≥ x} = {ω ∈ Ω : X(ω) ≥ x} are actually events. The probability of the event {X ≥ x}
is frequently of interest, so we make the following definition.
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Figure 2.1: A Gaussian cdf (in blue) and its derivative, the familiar “bell curve” from
elementary statistics (in green).

Definition 2.2.9. Let X be a random variable of type E. The distribution µX of X is the
pushforward X∗P of P on E. If Y is another random variable and µX = µY , we say that
X, Y are identically distributed .

2.2.10. Unraveling the definitions, if A ⊆ E is a measurable set,

µX(A) = P (X ∈ A) = P ({ω ∈ Ω : X(ω) ∈ A}).

For example, if E = R then µX([x,∞)) is the probability that X ≥ x. We think of two
identically distributed random variables as being isomorphic, but not the same.

Example 2.2.11. An especially important and familiar distribution is the Gaussian measure
N(0, 1) on R, which is the Stieltjes measure defined by the Gaussian cumulative distribution
function (or Gaussian cdf )

f(x) =
1√
2π

∫ x

−∞
exp

(
−y

2

2

)
dy.

In other words, the measure of [α, β) is by definition f(β) − f(α). Here the factor of
1/
√

2π is to ensure that N(0, 1) is actually a probability measure, c.f. Example 4.6.3.
A random variable with distribution N(0, 1) is said to be a standard-normally distributed
random variable. More generally, one defines N(µ, σ2) to be the Stieltjes measure defined
by the cumulative distribution function

x 7→ 1

σ
√

2π

∫ x

−∞
exp

(
−1

2

(
y − µ
σ

)2
)

dy,

and a random variable with distribution N(µ, σ2) is said to be normally distributed with
mean µ and standard deviation σ. See Figure ??.
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2.2.12. Recall that in elementary probability theory two events A,B are said to be inde-
pendent if P (A) = P (A|B), where P (A|B) (“the probability of A given B”) is by definition
P (A∩B)/P (B). The intuition is that if we know that B is true, then we want to restrict to
subsets of B and rescale the probability measure P so that B is almost surely true. However,
if A and B really have nothing to do with each other, the probability of A given B is just
the probability of A. We can write this in a more symmetrical form, which also avoids the
issue of division by zero, as in the following definition.

Definition 2.2.13. Let (Ω,Σ, P ) be a probability space and (E,Γ) a measurable space.

Countably many events An ∈ Σ are said to be independent if

P

(⋂
n

An

)
=
∏
n

P (An).

Countably many σ-algebras An ⊆ Σ are said to be independent if for every An ∈ An, the
events An are independent. Countably many random variables Xn of type E are said to be
independent if the pullback σ-algebras X∗nΓ are independent.

Random variables X, Y are said to be iid if they are independent and identically dis-
tributed.

2.2.14. The idea in the definition of independent random variables is that the pullback
σ-algebra X∗Γ is the set of events that can be checked as true or false by measuring X.

Example 2.2.15. Suppose that I am playing a game of cards. Every time I draw a card,
I put it back in the deck and then shuffle again. Let Xn be 1 if I draw the queen of hearts
on turn n, and 0 otherwise. Then the distribution of Xn is (51/52)δ0 + (1/52)δ1, where δx is
the Dirac measure at x. Since I shuffle between turns, the Xn are independent. So the Xn

are iid.

Exercise 2.2.16. Verify the inclusion-exclusion formula

P

(
n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k+1
∑

1 ≤ i1 < · · · < ik ≤ nP

(
k⋂
j=1

Aij

)

valid for any events A1, . . . , An.

Exercise 2.2.17 (Skohorod representation). Let µ be a Borel probability measure on R.
Show that there is a probability space Ω and a random variable X : Ω → R of distribution
µ.

Exercise 2.2.18. Let Xn be random variables and suppose that for every x ∈ R, the events
Xn ≥ x are independent. Show that the Xn are independent random variables.

Exercise 2.2.19. Let Xn be independent random variables of type E. Suppose that fn :
E → E are measurable maps. Show that the fn(Xn) are still independent.
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Exercise 2.2.20. Let X, Y : Ω→ E be random variables. A morphism of random variables
X → Y is a measure-preserving map F : Ω → Ω such that Y ◦ F = X. Two morphisms
F,G are equal almost surely if P (F = G) = 1. Two random variables X, Y are isomorphic if
there are morphisms F : X → Y and G : Y → X such that F ◦G and G ◦F are the identity
almost surely (so G is almost surely the inverse of F ).

Show that being equal almost surely is an equivalence relation on the set of morphisms
of random variables. Show that random variables Ω → E and morphisms between them,
modulo the equivalence relation of being equal almost surely, form a category. Show that
two random variables are isomorphic iff they are identically distributed.

2.3 Hausdorff measures

At this point we have defined Stieltjes measures. In particular, we defined the Lebesgue
measure and the Dirac measure. Let us treat some more measures. This section is optional,
as it is only used in some examples; one could, at least in principle, take the spherical
Lebesgue measure as a black box.

Our first motivation for this section comes from the Cantor set C. In some ways, C is
quite large, since it is uncountable. But Lebesgue measure does not recognize this; it only
recognizes that C is a null set, and so according to Lebesgue measure, C is no larger than
the empty set!

But Lebesgue measure is hardly the only measure guilty of this. The area of a circle, or
the volume of a plane, are both zero – but when we pass to a lower-dimensional measure,
namely the arc length of a circle, or the area of a plane, suddenly we can tell the difference
between them and the empty set. This suggests that the problem with the Cantor set is
that it is in some sense lower-dimensional than the line, which is one-dimensional.

2.3.1. Recall that Lebesgue measure µ is outer regular, so it satisfies, for every Borel set E,

µ(E) = inf

{
∞∑
n=1

µ(Un) : µ(Un) open, E ⊆
∞⋃
n=1

Un

}
.

Since every open subset of R can be written as a countable union of open intervals (α, β), and
the Lebesgue measure of an open interval (α, β) satisfies µ((α, β)) = β−α = supα<x,y<β |x−
y|, this is nothing more than

µ(E) = inf

{
∞∑
n=1

diamUn : Un open, E ⊆
∞⋃
n=1

Un

}
(2.1)

where the diameter of an open set U is defined by diamU = supx,y∈U |x− y|.
Now, recall some high school geometry: the volume of a d-dimensional ball U is propor-

tional to (diamU)d. This suggests that if we want to know the d-dimensional measure of a
set, we need to replace diamUn with (diamUn)d in (2.1).

Definition 2.3.2. The d-dimensional Hausdorff outer measure is defined on sets E ⊆ Rk

by

Hd(E) = inf

{
∞∑
n=1

(diamUn)d : Un open, E ⊆
∞⋃
n=1

Un

}
.
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The d-dimensional Hausdorff measure, also denoted Hd, is the restriction of Hd to Hd-
measurable sets.

2.3.3. We now check that Hausdorff measure is well-defined. First, according to Exer-
cise 2.3.11, Hd is an outer measure. Thus, by Carathéodory’s theorem, the Hd-measurable
sets – that is, those sets which cleanly divide every subset of Rk with respect to Hd – form a
σ-algebra Σ and Hd|Σ is honestly a measure. However, this is not a priori very useful. After
all, Σ could be the trivial σ-algebra! We will need to show that Σ contains the Borel sets
in order for Hd to be useful. In order to do so, we will need some general facts about outer
measures on metric spaces. If the reader is uncomfortable with metric spaces, they can take
X = Rd and d(x, y) = |x− y| and not miss out on any of the key ideas here.

Definition 2.3.4. Let (X, d) be a metric space. If A,B are nonempty subsets of X, we say
that A,B are separated if there is ε > 0 such that for all x ∈ A, y ∈ B, d(x, y) ≥ ε.

Example 2.3.5. In any metric space X, if A,B ⊆ X and A ∩ B is nonempty, then A,B
are nonseparated, since we can let x ∈ A ∩ B and then d(x, x) = 0 < ε. As subsets of R,
(−1, 0) and (0, 1) are nonseparated, since for every ε > 0 we can find points in both such
sets which are arbitrarily close to 0 (and hence to each other). Meanwhile, (−1, 0) and (1, 2)
are separated with ε = 1.

Definition 2.3.6. A metric outer measure on a metric space X is an outer measure ω on
X such that for every pair of separated sets A,B,

ω(A ∪B) = ω(A) + ω(B).

Lemma 2.3.7. Let ω be a metric outer measure on Rk. Then every Borel subset of Rk is
ω-measurable.

Proof. It suffices to show that for every closed subset K of Rk and every set A ⊆ Rk, K
cleanly divides A, thus

ω(A ∩K) + ω(A \K) ≤ ω(A).

This is clear unless ω(A) < ∞. TODO https://www.math.purdue.edu/ torresm/lecture-
notes/lebesgue-theory/lebesgue-lecture5.pdf

Theorem 2.3.8. Hausdorff outer measure is a metric outer measure, and Hausdorff measure
is a Borel measure.

Proof. By Lemma 2.3.7, we just need to show that Hd is a metric outer measure. Let A,B
be separated subsets of Rk.

We claim there are separated open sets U, V such that A ⊆ U , B ⊆ V . Indeed, there is
ε > 0 such that d(x, y) > ε if x ∈ A and y ∈ B. Let U be the union of all balls B(x, ε/3),
x ∈ A; let V be the union of all balls B(y, ε/3), y ∈ B. If U, V are not ε/3-separated, then
there exist x ∈ U and y ∈ V with d(x, y) < ε/3, and by definition of U, V there are x′ ∈ A,
y′ ∈ B with d(x, x′) < ε/3 and d(y, y′) < ε/3. So

d(x′, y′) ≤ d(x, x′) + d(x, y) + d(x′, y′) < ε,
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which is a contradiction since A,B are ε-separated. TODO: Draw a picture.

Now let W be a countable open cover of A ∪ B. TODO: Refine W using U, V . Draw a
picture to show why refining reduces diameter.

Since W was arbitrary,

Hd(A) +Hd(B) ≤ Hd(A ∪B).

The converse inequality is clearly true by σ-subadditivity of Hd, so Hd(A) + Hd(B) =
Hd(A ∪B). Therefore Hd is a metric outer measure.

Theorem 2.3.9 (axioms of Hausdorff measure). Hausdorff measure Hd on Rk is translation-
invariant. Furthermore, if d is an integer, then [0, 1]d×{0}k−d has measure 2d/αd, where αd
is the volume of the unit ball in Rd.

Proof. TODO

TODO: d-cells

TODO: Hausdorff dimension

Example 2.3.10. An important example of Hausdorff measure is the d − 1-dimensional
Hausdorff measure in Rd. When restricted to the unit sphere

Sd−1 = {x ∈ Rd : |x| = 1},

and normalized so that the total measure of the sphere is 1, the Hausdorff measure is called
the spherical Lebesgue measure, denoted σd−1. The spherical Lebesgue measure is especially
important because, once integration has been defined, we will have∫

Rd
f(x) dx =

∫ ∞
0

∫
Sd−1

f(rω)rd−1 dσd−1(ω) dr,

which is a generalization of the classical formula∫ ∞
−∞

∫ ∞
−∞

f(x, y) dx dy =

∫ ∞
0

∫ 2π

0

f(r cos θ, r sin θ)r dθ dr

for integration in polar coordinates. Here rd−1dσd−1(ω) plays the role of r dθ.

TODO: Cantor sets

TODO: Sierpinski’s carpet

TODO: Kakeya needle conjecture

Exercise 2.3.11. Show that Hd is an outer measure.

Exercise 2.3.12. Show that in any metric space, if A,B are nonempty compact sets then
A ∩B is empty iff A,B are separated.
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2.4 Ergodic systems

This section is used nowhere else in this book, except in some exercises and the following
section; it is meant to showcase an application.

Measure-preserving maps from a measured space to itself are important in probability
and thermodynamics; their study is known as ergodic theory .

Definition 2.4.1. A measure-preserving system (X,Σ, P, f) consists of a probability space
(X,Σ, P ) and a measure-preserving map f : X → X.

2.4.2. We may suppress X or Σ from the notation when they are clear or unhelpful to
specify.

2.4.3. The intuition for measure-preserving systems is as follows. We have a probability
space X whose events A are properties that the world could have, and the probability P (A)
is the probability that the world is in that state. The map f represents the passing of time;
each application of f represents the passing of a unit of time. However, the probability that
the universe has property A is the same today as it is tomorrow.

Definition 2.4.4. An ergodic system is a measure-preserving system (X,Σ, P, f) for which,
whenever f(A) ⊆ A and A ∈ Σ, then P (A) = 0 or P (A) = 1.

2.4.5. Ergodic systems are the most important examples of measure-preserving systems.
The reason is that ergodic systems behave “randomly”. In an ergodic system, the universe
might have property A today, but this is no evidence that the universe will have property A
tomorrow, because every day all the properties that the universe could have get completely
mixed up every time f is applied.

Let (X,P, f) be an ergodic system. Imagine that X is an egg; then P represents picking
a random point inside the egg, and f represents the action of scrambling the egg, say with
chopsticks. Though X is initially in an orderly state, the ergodicity of the system means that
all this order is lost and all the points of X get mixed up. This is illustrated mathematically
by the following example.

Example 2.4.6. One ergodic system is known as the irrational rotation. Let θ ∈ [0, 2π] and
suppose that θ/2π is irrational. Then the map f(z) = eiθz on the circle T, which rotates the
circle by θ, defines an ergodic system (T, µ, f), where µ is Lebesgue measure. The reader
who is familiar with some Fourier analysis may show this in Exercise 2.4.12. See Figure ??.
We will study irrational rotations further in Section 2.5.

2.4.7. As a sample of the power of ergodic theory, let us prove the following theorem that
“breaks the laws of thermodynamics”. If (X, f) is a measure-preserving system and x ∈ X,
we let fn(x) denote f ◦ · · · ◦ f , where there are n copies of f . The theorem is due to
Carathéodory, which is naturally why it is named after Poincaré.

Theorem 2.4.8 (Poincaré recurrence). Let (X,Σ, P, f) be a measure-preserving system.
For every A ∈ Σ, define A[ = {x ∈ A : ∀n fn(x) /∈ A}. Then P (A[) = 0.
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Figure 2.2: The first 300 points of the orbit of 0 of an irrational rotation with θ ≈ 0.81803.
The lighter points are farther along the orbit. The whole orbit is dense in T.

Proof. We first note that

A[ = A \
⋃
n∈N

fn(A)

which is measurable since each of the fn(A) are.
If m > n, then fn(A[) ∩ fm(A[) is empty: if x ∈ fm(A[), so that f−m(x) ∈ A[, then by

definition of A[,
f−n(x) = fm−n(f−m(x)) /∈ A.

Therefore, for any N ∈ N,

P (A[) =
1

N

N∑
n=1

P (fm(A[)) =
1

N
P

(
N⋃
n=1

fm(A[)

)
≤ 1

N
P (X) =

1

N
.

So P (A[) = 0.

2.4.9. Let us explain to the reader who is familiar with thermodynamics how to interpret
this theorem.

Let X be the set of microstates that the universe can be in and let us assume for simplicity
that X is finite. Let P be the normalized counting measure, so that

P (A) =
cardA

cardX

and Σ = 2X . Thus P (A) represents the probability of drawing a partiular microstate uni-
formly at random.

Let f : X → X be the map that sends the state of the universe right now to the state of
the universe one second into the future. We can think of sets A as macrostates, where x ∈ A
iff x is consistent with A. By Poincaré recurrence, if the universe is currently in macrostate
A, then there is an N such that N seconds into the future, the universe will again be in
macrostate A. In particular, the entropy of the universe will return to what it currently
is, apparently contradicting the second law of thermodynamics. This is no contradiction,
however, because N is much larger than the lifespan of the universe.
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2.4.10. We will not discuss ergodic systems much, but ergodic theory is a crucial application
of measure theory. For example, it can be used to prove the strong law of large numbers
from probability, and actually very powerful generalizations thereof. We refer the reader to
Coudéne [CE16] to learn about ergodic theory.

Exercise 2.4.11. Show that Poincaré recurrence fails for infinite measure spaces by giving
a counterexample.

Exercise 2.4.12. Show that the irrational rotation with Lebesgue measure forms an ergodic
system. (Hint: Let A be a subset of the circle which the irrational rotation sends into itself.
Consider the Fourier series of 1A. You are allowed to assume basic facts about Fourier series.)

2.5 Nonmeasurable sets and infinite games

A σ-algebra has very strong closure properties: one needs to use some kind of operation
that involves working with uncountably many sets at once to escape it. As a consequence,
every subset of R that we have encountered is at least Lebesgue measurable, and we have
not even managed to complete the proof that there is a subset of R which is not Borel
(Theorem 1.1.17). Lebesgue certainly hoped, but was unable to prove, that every subset of
R is Lebesgue measurable. However, Vitali showed that this is false. In this section we will
first prove Vitali’s theorem, and then prove that there is a Lebesgue measurable set that is
not Borel. Since we will need some nontrivial facts from set theory, this section is optional
and not used anywhere.

2.5.1. We first observe that to show that there is a subset of R which is not measurable, it
suffices to do so with R replaced by T. Indeed, the map F (θ) = eiθ is a measure-preserving
isomorphism F : [0, 2π)→ T, so if A ⊆ T is nonmeasurable, then F−1(A) is nonmeasurable
as well.

2.5.2. Let us recall some algebra. If G is a group and X is a set, an action of G on X is a
rule by which every g ∈ G induces a bijection Tg : X → X which is functorial in the sense
that if h ∈ G, then Tgh = TgTh. Equivalently, an action of G on X is a morphism of groups
G → X! where X! is the group of all bijections X → X. If x ∈ X, the set {Tg(x) : g ∈ G}
is known as the orbit of x. Then we get a surjective map

Sx : G→ {Tg(x) : g ∈ G}
g 7→ Tg(x).

If every such map Sx is a bijection, then we say that the action is a free action.

2.5.3. Now recall the irrational rotation, Example 2.4.6. If θ ∈ [0, 2π] is an angle and θ/2π
is irrational, then we obtain a measure-preserving system T : T→ T, known as an irrational
rotation, which acts by rotating T by θ. If n ∈ Z, then T n acts by rotating T by nθ. That
is, we get a group action of Z on T where n ∈ Z rotates T by nθ.

Lemma 2.5.4. Every irrational rotation Z→ T! is a free measure-preserving action.
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Proof. Clearly the irrational rotation is measure-preserving, since it is a rotation and Lebesgue
measure on T is rotation-invariant. So we just need to show that it is free. If not, there is
x ∈ T and q1, q2 ∈ Z such that T q1(x) = T q2(x). Setting q = q2 − q1 we conclude T q(x) = x.
In other words,

x+ qθ ≡ x mod 2π.

Thus there is N ∈ Z such that qθ = 2πN , or in other words θ/2π = N/q ∈ Q, even though
θ/2π is irrational.

Theorem 2.5.5 (Vitali). There is a subset of T which is not measurable.

Proof. Choose an irrational rotation Z→ T!, let O be the set of all orbits thereof, and let µ
be Lebesgue measure on T. Since the irrational rotation is free and Z is countably infinite,
every element of O must also be countably infinite. Since T is uncountable, O must be
uncountable. The axiom of choice, Axiom B.1.47, implies that there is a set X ⊂ T which
contains exactly one element from each orbit in O. Suppose that X is measurable. Then⋃
q∈ZX + q = T and the union is disjoint, so

1 = µ(T) =
∑
q∈Z

µ(X + qθ) =
∑
q∈Z

µ(X),

since the irrational rotation is measure-preserving, so µ(X) > 0 (so that it sums to 1) yet
µ(X) = 0 (since the sum of infinitely many copies of any nonzero number is infinite and
hence > 1), a contradiction.

2.5.6. Though the existence of Vitali’s set may feel paradoxical, and somewhat hurts the
effectiveness of R3 as a model of “space”, it is rarely worth worrying oneself over. Owing to
the use of the axiom of choice, it is essentially impossible that a nonlogician will encounter
something like Vitali’s set in practice. In fact, we will see (see the remarks at 3.3.18)
that virtually all sets which appear in mainstream analysis, algebra, or number theory are
measurable.

On the other hand, Vitali’s set shows that in logic, where the axiom of choice (and its
friends such as the axiom of power set and the axiom schema of replacement) is of import,
nonmeasurable sets may emerge. But there exist models of set theory due to Solovay [Sol70]
with certain axioms weakened where Vitali’s construction fails and every subset of R is
measurable, and someone with a more constructivist bent may conclude from that theorem
that indeed every set is measurable in “reality” (whatever that means). Strichartz [Str03,
Chapter 1] summarized these observations by remarking that “wise-guys who like using the
axiom of choice will have to worry about . . . wolves under the bed, etc.”

2.5.7. Now let us begin the proof of Theorem 1.1.17. To do this, we need the notion of “Borel
complexity.” The reader should review the notion of an ordinal (see Definition B.1.33) before
reading this proof.

Definition 2.5.8. Let Σ1 = T be the topology of R. Given Σα, α a countable ordinal, let
Πα be the set of all complements of elements of Σα. Let Σα+1 be the set of countable unions
of elements of Πα. If β < ω1 is not equal to α + 1 for any α, let Σβ =

⋃
α<β Σα.
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If A ⊆ R is a Borel set and Σα or Πα is the smallest set in the above construction such
that A ∈ Σα or A ∈ Πα, we say that A has Borel complexity Σα or Πα. The set {Σα,Πα}α
of all Borel complexity classes is called the Borel hierarchy .

2.5.9. By transfinite recursion (Theorem B.1.35), for every countable ordinal α, Σα and Πα

are well-defined. Every open set has Borel complexity Σ1 and every closed set has Borel
complexity Π1.

2.5.10. Here is a diagram of the first few stages of the Borel hierarchy:

Π1 Π2 Π3 · · ·

Σ1 Σ2 Σ3 · · ·

The dashed blue arrows indicate taking countable intersections, while the dotted red arrows
indicate taking countable unions. At every stage, Πα consists of the complements of elements
of Σα.

Lemma 2.5.11. Every Borel set has a well-defined Borel complexity.

Proof. The set A was obtained by applying countable union and complement countably
many times to an open set, and thus is in Σω1 =

⋃
α<ω1

Σα.

2.5.12. One may wonder if there are sets of Borel complexity Σα for every countable ordinal
α. In fact, there are; see [Mar02, Corollary 2.38].

2.5.13. Recall (Definition B.1.53) that i1 is the cardinality of R, which is well-defined by
Theorem B.1.50; meanwhile i2 is the cardinality of the set of all subsets of R.

Lemma 2.5.14. If α is a countable ordinal, then

card Σα = card Πα = i1.

Proof. We proceed by transfinite induction. By Theorem B.1.57, Σ0 has cardinality i1. The
mapping A 7→ Ac is a bijection Σα → Πα.

If Πα has cardinality i1 then so does Σα+1, since each element of Σα+1 can be expressed
in terms of a countable number of elements of Πα, and i1 × i1 × · · · has cardinality i1 by
Theorem B.1.55.

Finally if β is a countable limit ordinal and for every α < β, Σα is countable, then Σβ is
a countable union of sets of cardinality i1, hence has cardinality i1 by Theorem B.1.55. It
follows by induction that for every countable ordinal α, Σα has cardinality i1.

Theorem 2.5.15 (Theorem 1.1.17, redux). The Borel σ-algebra of R has cardinality i1,
which is strictly less than the cardinality i2 of the Lebesgue σ-algebra. In particular, there
is a Lebesgue measurable set which is not Borel.
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Proof. Let Σ be the Borel σ-algebra. Then

Σ =
⋃
α

Σα.

The set of all countable ordinals has cardinality ℵ1, and ℵ1 ≤ i1 (by Theorem B.1.50 and
the fact that i1 is uncountable). So

card Σ = ℵ1 · i1 = i1

by Theorem B.1.55.
On the other hand, the Lebesgue σ-algebra contains every null set, and in particular

contains every subset of a null Cantor set. A Cantor set has cardinality i1, so its power
set has cardinality i2. By Cantor’s diagonal argument, i1 < i2. Since there are more
Lebesgue measurable sets than Borel sets, there must a Lebesgue measurable set which is
not Borel.

2.5.16. Lebesgue falsely claimed [Leb05] that the continuous image of a Borel set is Borel.
In fact, Souslin [Sou] showed that there exists a projective set – a set which can be obtained
from Borel sets by taking continuous images and complements finitely many times – which
is not Borel. For a discussion of the history of Lebesgue’s blunder see MathOverflow [neu].

2.5.17. One may reasonably ask if every projective set is Lebesgue measurable. To discuss
this, we need the notion of a Gale-Stewart game, which is just a set A ⊆ [0, 1]. The set
defines a game in which the players, Alice and Bob, take turns choosing digits; Alice picks
first. After countably many rounds, the players have given a real number x ∈ [0, 1]. Alice
wins iff x ∈ A, and otherwise Bob wins.

Definition 2.5.18. Let A ⊆ [0, 1] be a Gale-Stewart game. Then:

1. We say that Alice has a winning strategy for A if there is a digit x1 which Alice can
pick such that no matter what digit x2 Bob picks, Alice can pick a digit x3 such
that no matter what digit x4 Bob picks, and so on, Alice will win in the sense that
0.x1x2x3x4 · · · ∈ A.

2. We say that Bob has a winning strategy for A if for every digit x1 that Alice picks,
there is a digit x2 that Bob can pick such that no matter what digit x3 that Alice
picks, there is a digit x4 that Bob can pick, and so on, Bob will win in the sense that
0.x1x2x3x4 . . . /∈ A.

3. If either Alice or Bob have a winning strategy, we say that A is a determined game.

Theorem 2.5.19 (Martin-Steel projective determinancy theorem [MS89]). Every projective
set is determined.

2.5.20. Every determined game is Lebesgue measurable; see Exercise 2.5.25. So, if we believe
the projective determinacy theorem, every projective set is measurable. However, there is
just one catch: Martin and Steel needed to use axioms for set theory much stronger than
the usual axioms for set theory discussed in Section B.1 to prove their theorem, and this is
optimal in the sense that a weaker set of axioms for set theory cannot prove the projective
determinacy theorem.
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Exercise 2.5.21. Let A ⊆ R be a measurable set. Show that either A is null, or A has a
nonmeasurable subset.

Exercise 2.5.22 ([Pug13]). Show that the continuous (or even smooth, if you are brave)
image of a Lebesgue measurable set may not be measurable. (Hint: Let C be a null Cantor
set and F be a “fat” Cantor set, so F has positive Lebesgue measure. Send a null subset C
to a nonmeasurable subset of F .)

Exercise 2.5.23. Show that for every Lebesgue measurable set E ⊆ R there is a set F of
complexity Π2 and a set D of complexity Σ2 such that

D ⊆ E ⊆ F

and F \D is null. (Hint: Lebesgue measure is a Radon measure.)

Exercise 2.5.24 (Gale-Stewart). Prove that every open subset of [0, 1] is determined.

Exercise 2.5.25. Assume that A is a determined game such that every measurable subset
of A is null. Show that A is null, and therefore measurable. Conclude that every determined
game is measurable, and in particular that Vitali’s set is not determined.

Exercise 2.5.26 (Zermelo). The game of chess consists of two players, White and Black.
White is more likely to win than Black if both players are equally skilled. So consider chess,
modified so that if there is a draw, then Black automatically wins. Assume that there is N
such that every game of chess is at most N turns long (this is a nice exercise in recreational
mathematics if one knows the rules of chess), and at every turn, White and Black have at
most N valid moves. Show that chess can be viewed as a Gale-Stewart game A, and that A
is determined.
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Chapter 3

Measurable functions

Throughout this chapter, let (X,Σ) be a measurable space and let B be a Banach space.
We would like to consider functions f : X → B which “respect” Σ. Then, given a measure
µ defined on Σ, we will be able to define the integral

∫
X
f dµ of f with respect to µ.

3.1 Simple functions

When we prove a theorem T about functions in measure theory, we want to follow the
following template:

1. Let F be the set of functions for which T is true. Show that F contains all functions
which are “sufficiently simple.”

2. Show that F is closed under linear combination, so is a vector space.

3. Show that F is closed under taking limits of appropriate type.

4. Conclude that every appropriate function lies in F .

In this section we treat the “sufficiently simple” functions.

Definition 3.1.1. A simple function is a function f : X → B such that the image of f
is finite, and for every b in the image of f , f−1(b) is a measurable set. The set of simple
functions is denoted Simp(X → B).

3.1.2. The simple functions have a particularly convenient canonical form. To define them,
we first characterize the R-valued simple functions.

Definition 3.1.3. Let Y ⊆ X be a measurable set. The indicator function of Y , denoted
1Y , is the function X → {0, 1}, defined by 1Y (y) = 1 if y ∈ Y and 1Y (y) = 0 if y /∈ Y .

3.1.4. Note that every indicator function is simple, since its image is {0, 1}, the preimage of 0
is Y c, the preimage of 1 is Y , and Y, Y c are both measurable. Conversely, if f ∈ Simp(X →

51
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C), f is a linear combination of indicator functions. In fact, if {y1, . . . , yn} is the image of
f , and the preimage of yi is Yi, then

f(x) =
n∑
i=1

yi1Yi(x).

Indeed, the Yi are disjoint since they are preimages of distinct real numbers, so yi1Yi(x) = yi
iff f(x) = yi, and f(x) = 0 otherwise. This characterization also works for B-valued simple
functions: if {b1, . . . , bn} is the image of f , and the preimage of bi is Yi, then

f(x) =
n∑
i=1

bi1Yi(x).

3.1.5. We now show that Simp(X → B) is closed under various operations.

Definition 3.1.6. A vector space A over C is called an algebra if it is equipped with a
multiplication A × A → A which is associative, distributes over addition, and satisfies, for
every c, d ∈ C and x, y ∈ A,

(cx)(dy) = (cd)(xy).

If the multiplication of A has an identity, we call the identity 1 and call A a unital algebra.

3.1.7. In particular, a collection of functions is an algebra iff it is closed under multiplication.
See Exercise 3.1.10.

Lemma 3.1.8. Simp(X → B) is a vector space. In particular, Simp(X → C) is a unital
algebra.

Proof. Let f, g ∈ Simp(X → B), say

f(x) =
n∑
i=1

yi1Yi(x)

and

g(x) =
m∑
j=1

zj1Zj(x).

We first claim that f + g is simple. In fact, the image of f + g is contained in {yi + zj : 1 ≤
i ≤ n, 1 ≤ j ≤ m}, and the preimage of yi + zj under f + g is Yi ∩ Zj.

The proof that Simp(X → B) is closed under scaling is similar. Clearly Simp(X → B)
is nonempty, so this implies that Simp(X → B) is a vector space.

Now if B = C, function multiplication is defined, and

fg(x) =
n∑
i=1

yi1Yi(x)
m∑
j=1

zj1Zj(x) =
∑
i,j

yizj1Yi∩Zj(x).

Therefore fg is simple. Moreover, the function f(x) = 1 is an identity for multiplication.
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Lemma 3.1.9. Let f, g ∈ Simp(X → C). Then |f | ∈ Simp(X → C). In fact, if f, g ∈
Simp(X → R), then max(f, g) ∈ Simp(X → R) and min(f, g) ∈ Simp(X → R).

Moreover, if f ∈ Simp(X → B), the function x 7→ ||f(x)|| is in Simp(X → C).

Proof. Left as Exercise 3.1.11.

Exercise 3.1.10. Look up or prove the following algebraic theorems:

1. Let ϕ : C → A be a morphism of rings. Then A is an algebra, where scalar multipli-
cation is defined by za = ϕ(z)a, for any z ∈ C and a ∈ A. We call ϕ the canonical
inclusion of C into A.

2. If A is a unital algebra with multiplicative identity 1A, then the map ϕ(z) = 1Az,
ϕ : C→ A, is a morphism of rings, and is in fact the canonical inclusion of C into A.

3. If V is a vector space of functions X → C, then V is an algebra over C iff V is closed
under function multiplication.

None of these theorems actually require that we are working over C; they are valid if C is
replaced with any field. However, you are not expected to check that.

Exercise 3.1.11. Prove Lemma 3.1.9.

Exercise 3.1.12. If (An)n is a sequence of measurable sets, we define lim supn→∞An by the
relation

1lim supn→∞ An = lim sup
n→∞

1An .

Then:

1. Show that lim supn→∞An is a well-defined measurable set.

2. Show that x ∈ lim supn→∞An iff there are infinitely many n ∈ N such that x ∈ An.

3. Prove the Borel-Cantelli lemma: If µ is a nonnegative measure on X such that

∞∑
n=1

µ(An) <∞,

then lim supn→∞An is µ-null.

The Borel-Cantelli lemma is a primitive example of a “zero-one law”, a theorem that implies
that certain sets must either be null or have null complement.

Exercise 3.1.13. Given x ∈ [0, 1), we may assign x a canonical decimal expansion by not
letting x have a decimal expansion that ends with an infinitely repeating string of nines.
We let xj ∈ {0, . . . , 9} denote the jth entry in the canonical decimal expansion of x (so
for example (π − 3)3 = 1). Let us say that x has uniform expansion at n ∈ N if for every
d ∈ {0, . . . , 9}, the set of j ∈ {1, . . . , 10n} such that xj = d has cardinality n. In other
words, x has uniform expansion at n iff for every d ∈ {0, . . . , 9} the probability that a
j ∈ {1, . . . , 10n} drawn uniformly at random satisfies xj = d is 1/10.

Let A be the set of x ∈ [0, 1) such that there are infinitely many n ∈ N such that x has
uniform expansion at n. Show that A is a Borel set, and that A is Lebesgue null. (Hint:
Use the Borel-Cantelli lemma, Exercise 3.1.12).)
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3.2 Measurable functions

We want to know which functions X → B are “good” from the perspective of measure
theory. To accomplish this, recall the notion of pointwise convergence.

Definition 3.2.1. A sequence of functions fn : X → B is said to converge pointwise to a
function f if for every x ∈ X,

f(x) = lim
n→∞

fn(x).

3.2.2. Let µ be a complete measure on Σ. If µ is not already complete, we can always
expand Σ by adjoining the µ-null sets to Σ, so this assumption is no loss in generality.

3.2.3. In measure theory, a property is said to hold almost everywhere if it holds everywhere
except a null set, and hold almost nowhere if it only holds on a null set. We will refer to
measurable functions whose definition only makes sense almost everywhere as if they were
defined on all of X.

Example 3.2.4. Let µ be Lebsegue measure on R and f(x) = 1/x. Then f(0) is not defined,
but {0} is a µ-null set. So we can view f as a function R→ C, even though it is only defined
almost everywhere.

3.2.5. Because µ-null sets are not very important, we want to view two functions that are
equal almost everywhere as actually being the same function, modulo “measurement error”.
For example, if u(x) denotes the temperature in the air at a point x ∈ R3 measured by
some thermometer, and we measure that u(x) = 0 at every x close to 0, but u(0) = 1,
then we must have made an error in the measurement of u(0), and might as well view this
measurement u as “the same as” the measurement of temperature which is identically 0 in
a neighborhood of 0.

Definition 3.2.6. Let µ be a measure on Σ. A sequence of functions fn : X → B is said
to converge pointwise almost everywhere with respect to µ, or simply almost converge, to a
function f : X → B if there is a null set Z such that on X \ Z, fn → f pointwise. In this
case, we write

f = lim
n→∞

fn,

noting that the limit is meant almost everywhere if unclear from context.

3.2.7. Note that in Definition 3.2.6, we allow the functions fn, or their limit f , to be
undefined on a null set, which is then viewed as a subset of the bad set Z where the fn may
not converge to f .

Example 3.2.8. Any sequence of functions which converges pointwise almost converges. As
an example of a sequence of functions which almost converges but doesn’t converge pointwise,
let fn(x) = xn, X = [0, 1]. Then fn → 0 everywhere except 1, so fn → 0 almost everywhere
with respect to Lebesgue measure.

Definition 3.2.9. A measurable function f : X → B is a function such that there is a
sequence fn ∈ Simp(X → B) such that fn → f almost everywhere. LetM(X → B) denote
the set of measurable functions.
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3.2.10. The notationM(X → B) will make more sense when we define the Lp-spaces later
on. We will abuse notation and writeM if X,B are clear from context, and may also write
something like M(X → B, µ) if µ is not clear from context.

Lemma 3.2.11. M(X → B) is a vector space. In particular, M(X → C) is an algebra
such that if f, g ∈ M(X → C), then so are max(f, g), min(f, g), and |f |. Moreover, if
f ∈M(X → B), then x 7→ ||f(x)|| is in M(X → C).

Proof. Let f, g ∈ M(X → B), and suppose that fn ∈ Simp(X → B), fn → f . Similarly
let gn → g, gn ∈ Simp(X → B). Then fn + gn ∈ Simp(X → B) by Lemma 3.1.8 and
fn + gn → f + g.

We leave the other claims as an exercise for the reader.

3.2.12. Let N be the set of all functions f which are zero almost everywhere, thus there is
a null set Z such that on X \ Z, f = 0.

Lemma 3.2.13. The set N of functions that are zero almost everywhere is a vector subspace
of M(X → B).

Proof. Let f ∈ N , and suppose that Z is the set where f is nonzero. We first claim that
f is measurable; in fact, the sequence fn = 0 converges to f pointwise except on Z, hence
almost everywhere.

Now if g ∈ N , and g is nonzero on a set W , then f + g is nonzero on a subset of the null
set Z ∪W ; since µ is complete, any subset of Z ∪W is null. The argument for scalars is
similar. Clearly 0 ∈ N so N is nonempty.

3.2.14. Whenever W is a vector subspace of a vector space V , we may form its quotient
space V/W of equivalence classes, where two elements f, g ∈ V are viewed as equivalent if
f − g ∈ W . In particular, if we take the quotient M(X → B)/N , two functions f, g are
equivalent iff f − g is zero almost everywhere.

Definition 3.2.15. Let N be the space of all functions that are zero almost everywhere is
a vector subspace. We denote its quotient space

M(X → B) =
M(X → B)

N
.

We will abuse terminology and refer to equivalence classes f ∈ M(X → B) as “functions”,
and a representative of an equivalence class f as a version of f .

3.2.16. Again, we may write M(X → B, µ) and similar notations to mean M(X → B). In
general, we will want to work with M whenever possible rather than M.

Exercise 3.2.17. Let µ be a probability measure on a measurable space X. Let (fn)n be a
sequence of measurable functions on (X,µ), and f a measurable function on (X,µ). Assume
that for every ε > 0, one has

∞∑
n=1

µ({x ∈ X : ||fn(x)− f(x)|| > ε}) <∞.

Show that fn → f almost everywhere.
This characterization is highly useful in probability, where one is typically not able to

refer directly to elements of X, but only measurable sets, but still wants to be able to discuss
convergence almost everywhere. (Hint: Use the Borel-Cantelli lemma, Exercise 3.1.12).)
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3.3 Characterizing measurable functions

The current definition of M is unwieldly. Its elements are equivalence classes of functions,
themselves defined to be the limits of simple functions, whose definition was natural but
already little long. Here we give another characterization of measurability that is somewhat
easier to work with, and will readily imply that every function that is relevant to analysis is
measurable.

3.3.1. Throughout, we as usual fix a complete measured space (X,Σ, µ) and a Banach space
B.

Definition 3.3.2. A function f : X → B is almost separably valued if there is a null set Z
such that f(X \ Z) is separable in the topology of B.

3.3.3. Being almost separably valued is a good condition. It means that, modulo a harmless
null set, the image of f consists of points which can be approximated by points that lie in a
countable set C; and elements of C then are likely to admit finitary descriptions. Think of
how difficult R would be to work with if we did not have Q, whose elements are described
as pairs of natural numbers!

3.3.4. Thankfully, most Banach spaces that arise naturally in analysis turn out to be separa-
ble; certainly any finite-dimensional vector space has this property, and all but one Banach
space that we will consider in this text will be separable. Certainly any function into a
separable Banach space is almost separably valued. So Definition 3.3.2 will turn out to be a
slightly annoying technical condition, and not at all of import, in practice. The reader who
is only interested in the case B = C, which is reasonable to do on one’s first reading, can
forget about this hypothesis altogether.

Definition 3.3.5. The carrier 1 of a function f : X → B is the set {x ∈ X : f(x) 6= 0}.

3.3.6. Now B has a norm, so it has open balls B(x, r) = {y ∈ B : ||x − y|| < r}, and
in particular B has a topology: its open sets are the unions of the balls B(x, r). So we
can define its Borel σ-algebra in the usual way: it is the smallest σ-algebra containing the
topology of B.

3.3.7. Our goal in this section is to prove the following theorem:

Theorem 3.3.8. Let f : X → B be a function with carrier C, possibly only defined almost
everywhere. Then the following are equivalent:

1. f is measurable.

2. f is almost separably valued and for every open set U ⊆ B, f−1(U)∩C is measurable.

3. f is almost separably valued and for every closed set K ⊆ B, f−1(K)∩C is measurable.

4. f is almost separably valued and for every Borel set W ⊆ B, f−1(W )∩C is measurable.

1Some books prefer the term “support”, but we use “support” to mean the closure of the carrier, whenever
(X,µ) has a topology.
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Corollary 3.3.9. Let Γ be the Borel σ-algebra of B, so B = (B,Γ) is a measurable space
whose measurable sets are exactly the Borel sets. Then a function f : X → B is measurable
iff f is almost separably valued and for every measurable Y ⊆ B, f−1(Y ) is measurable.

3.3.10. The reader should compare Corollary 3.3.9 to the result which says that a function
f is continuous iff the preimage of an open set is open. It says that a measurable function
X → B is, modulo sets of measure zero, the same thing as a measurable map X → B, where
B is equipped with its Borel σ-algebra.

3.3.11. Before we prove Theorem 3.3.8, we need several lemmata which are useful in their
own right.

Lemma 3.3.12. Let fn : X → B be a sequence of functions converging pointwise to a
function f . For every open U ⊆ B, we define Un = {y ∈ U : infx/∈U ||x− y|| > 1/n}. Then

f−1(U) =
∞⋃
n=1

∞⋃
K=1

∞⋂
k=K

f−1
k (Un).

TODO: Draw a picture of Un

Proof. The following are equivalent:

1. x ∈ f−1(U).

2. f(x) ∈ U .

3. There are n,K such that for every k ≥ K, fk(x) ∈ Un.

4. There are n,K such that for every k ≥ K, x ∈ f−1
k (Un).

5. There are n,K such that x ∈
⋂
k≥K f

−1
k (Un).

6. x ∈
⋃
n

⋃
K

⋂
k≥K f

−1
k (Un).

Indeed, for every i ∈ {1, . . . , 6}, the ith entry in the above list is clearly equivalent to the
i+ 1th entry.

Definition 3.3.13. A function f : X → B is separably valued if the image of f is separable
in B.

Lemma 3.3.14. Let f : X → B be a function with carrier C. Then the following are
equivalent:

1. f is the pointwise limit of simple functions.

2. f is separably valued and for every open set U ⊆ B, f−1(U) ∩ C is measurable.

3. f is separably valued and for every open ball U ⊆ B, f−1(U) ∩ C is measurable.
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Proof. We first show that 1 implies 2. Let fn → f pointwise, fn ∈ Simp(X → B) and
for every n, let {bn1 , . . . , bnk(n)} be the image of fn. Let K be the closure of K0 = {bni :

n ∈ N, i ∈ {1, . . . , k(n)}}. Then K0 is countable and dense in K, so K is separable;
moreover, f(X) ⊆ K, so f is separably valued. Now let U ⊆ B be an open set; then
f−1(U) ∩ C = f−1(U \ {0}), and U \ {0} is open.

Thus we must show that if V is an open set which does not contain 0, f−1(V ) is mea-
surable. Let Vk = {y ∈ V : infx/∈V ||x − y|| > 1/n}. Clearly f−1

n (Vk) is measurable since
there are only finitely many points of fn(X) in Vk, each with a measurable preimage, and
Lemma 3.3.12 implies

f−1(V ) =
∞⋃
n=1

∞⋃
K=1

∞⋂
k=K

f−1
k (Vn)

which is measurable since the measurable sets form a σ-algebra.
Clearly 2 implies 3 so it suffices to show that 3 implies 1. Let {bi : i ∈ N} be dense in

f(X). Let
Cij = {x ∈ C : ||f(x)− bi|| < 1/j}.

Then Cij is a preimage of a union of open balls, so Cij is measurable. Now it would be
reasonable to define for every x ∈ Cij, fn(x) = bi, except that the Cij are not disjoint.

To rectify this problem, let

Eijn = Cij \
⋃

(i,j)<(k,`)≤(n,n)
1≤i,j≤n

Ck`

where (i, j) ≤ (k, `) iff j < ` or j = ` and i ≤ k. Then if n is fixed, the Eijn are disjoint,
Eijn ⊆ Cij. Now let

fn =
n∑

i,j=1

bi1Eijn .

Sublemma 3.3.15. fn → f pointwise.

Proof. Let x ∈ X. If f(x) = 0, then for every n, fn(x) = 0, so fn(x)→ f(x).
Otherwise, x ∈ C. Let ε > 0. Let N1 > 1/ε and choose N2 so that

||f(x)− bN2|| <
1

N1

.

Now let N = max(N1, N2). Then x ∈ CN2N1 , so if n > N ,

(k, `) = max
(N1,N2)≤(i,j)≤(n,n)

(i, j),

then x ∈ Ek`n. Therefore fn(x) = bk and

||f(x)− bk|| <
1

`
≤ 1

N1

< ε.

But fn(x) = bk, so ||fn(x)− f(x)|| < ε.
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This implies 1.

Lemma 3.3.16. Let f : X → B be a function with carrier C. The following are equivalent:

1. For every closed set K ⊆ B, f−1(K) ∩ C is measurable.

2. For every open set U ⊆ B, f−1(U) ∩ C is measurable.

3. For every Borel set W ⊆ B, f−1(W ) ∩ C is measurable.

Proof. Obviously 3 implies 1.
Now assume 1. Then let U ⊆ B be open,

Kn = {y ∈ B : inf
x/∈U
||x− y|| ≥ 1

n
}.

Then Kn is closed and U =
⋃
nKn. But f−1(U)∩C =

⋃
n f
−1(Kn)∩C, and the f−1(Kn)∩C

are measurable, so 2 follows.
To see that 2 implies 3, note that the set Γ of all sets Y such that f−1(Y ) ∩ C is

measurable is a σ-algebra. Indeed Γ contains ∅ so is nonempty, is closed under complement
since f−1(B \ Y ) = X \ f−1(Y ), and is closed under countable union since f−1(

⋃
n Yn) =⋃

n f
−1(Yn). Since Γ contains the open sets, Γ contains the Borel sets.

Proof of Theorem 3.3.8. We can show that f is measurable iff f is almost separably valued
and for every open set U , f−1(U)∩C is measurable. In fact, Lemma then immediately shows
that for every open set U , f−1(U) ∩C is measurable iff the same is true when “open set” is
replaced with “closed set” or “Borel set”.

First assume that f is measurable. Then there are fn ∈ Simp(X → B) and a null set Z
such that fn → f pointwise on X \Z and f is defined on X \Z. So fn1X\Z → f1X\Z (where
f1X\Z = 0 if f is undefined), so f1X\Z meets the criteria of Lemma 3.3.14; since null sets
are measurable, so does f .

Conversely, if Z is a null set such that f(X \ Z) is separable and for every open set
U , f−1(U) ∩ C is measurable, then f1X\Z is separably valued and for every open set U ,

(f1X\Z)−1(U) ∩ C is measurable, so Lemma 3.3.14 implies the claim.

We now prove a very important theorem about measurable functions. Note that the
analogous result for continuous functions (or even Riemann integrable functions) does not
hold.

Theorem 3.3.17. Suppose that fn are measurable functions which almost converge to a
function f . Then f is measurable.

Proof. We apply Newberger’s theorem. Since the fn are almost separably valued, there are
null sets Zn such that K =

⋃
n fn(X \ Zn) is closed. Therefore f is almost separably valued.

Then Lemma 3.3.12 implies that for every open set U ⊆ B,

f−1(U) ∩ C =
∞⋃
n=1

∞⋃
K=1

∞⋃
k=K

f−1
n (Un) ∩ C

which implies that f−1(U) is a countable union of countable unions of countable intersections
of measurable sets, hence is measurable.
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Figure 3.1: A sequence of Gaussian cdfs (Example 2.2.11), fn, converging almost every-
where to the discontinuous Heaviside function. Here f1 has a blue plot, f2 has a green plot,
f3 has a red plot, and f4 has an orange plot.

3.3.18. Let R be equipped with its usual Lebesgue measure (or really any Borel measure µ
on any space with a countable dense subset, such that for every countable set Z, µ(Z) = 0).
Then any continuous function R → B pulls back open sets to open (hence Borel) sets and
has separable image (since the image of Q is dense in the image of R), hence is measurable by
Theorem 3.3.8. Any pointwise limit of continuous functions is also measurable; for example
any function with only a discrete set of discontinuities, or with only jump discontinuities.
A monotone function has only jump discontinuities, so is measurable. A similar argument
applies for any left-continuous or right-continuous function. And of course, we can modify
any of the above functions on a countable set (or any null set!) to get another measurable
function. See Exercise 3.3.21 and Figure ??.

3.3.19. Which almost separably valued functions are nonmeasurable? If A ⊆ X is a non-
measurable set then 1A pulls back the Borel set {1} to the nonmeasurable set A, so that 1A
is nonmeasurable. An example of a nonmeasurable set is Vitali’s set (Theorem 2.5.5).

Example 3.3.20. An example of a function which is not almost separably valued is given
by Example A.4.4. Let δ be as in that example and let f(x) = δx. Then for any uncountable
Y ⊆ R, f(Y ) is an uncountable discrete set, so removing a null set cannot possibly help us
here.

Exercise 3.3.21. Prove the assertions in Example 3.3.18.

Definition 3.3.22. Define the Baire space Bn inductively: let B0 be the space of continuous
functions [0, 1] → C, and let Bn+1 be the space of pointwise limits of functions in Bn. If
f ∈ Bn, we say that f is n-Baire.

Unfortunately, there is another notion of Baire space, having to do with the Baire category
theorem, which is not the same as the Baire space that we just defined.

Exercise 3.3.23. Show that every Baire function is Borel. (The converse is true if one
allows for α-Baire functions, α any countable ordinal, but you are not being asked to prove
that.)
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Figure 3.2: The sequence of functions fn(x) = xn defined on [0, 1] converges nearly uni-
formly, and hence almost everywhere, to 0. Here f1 is blue, f2 is green, f4 is red, and f8 is
orange. The defect near 1 implies that they do not converge uniformly.

Exercise 3.3.24. Show that the derivative of a differentiable function is 1-Baire. Show that
the function 1Q∩[0,1] is 2-Baire but not 1-Baire.

Exercise 3.3.25. Find a function which is 3-Baire but not 2-Baire. More generally, find a
function which is (n+ 1)-Baire but not n-Baire.

3.4 Convergence of measurable functions

We have already discussed two means by which measurable functions may converge to other
measurable functions: pointwise and almost pointwise. From this point onwards, pointwise
convergence will be largely irrelevant; following our philosophy that null sets are important,
almost pointwise will usually be the desired property.

3.4.1. Throughout, we fix a complete measured space (X,Σ, µ) and a Banach space B.

Definition 3.4.2. A sequence of functions fn converge to a function f uniformly if for every
ε > 0 there is an N such that for every n > N , sup ||fn − f ||B < ε.

3.4.3. Now, by analogy with the notion of a property holding “almost everywhere” (every-
where except a null set), we introduce the notion of a property holding nearly everywhere;
that is, everywhere except a set of measure ε > 0. The property holds for arbitrarily small
ε, but the parameters in the property (the δs, Ns, and so on) may become arbitrarily “bad”
as ε→ 0.

Definition 3.4.4. A sequence of functions fn : X → B converges nearly uniformly to a
function f : X → B if for every ε > 0 there is a set Eε such that |µ|(X \Eε) < ε and fn → f
uniformly on Eε.
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3.4.5. Thus fn → f nearly uniformly iff for every ε > 0 there is a E such that for every δ > 0
there is an a N such that |µ|(E) < ε and for every n > N , supE ||fn − f ||B < δ. Clearly a
sequence which converges nearly uniformly converges almost pointwise; indeed, the sets Eε
where the sequence fails to converge uniformly have a null intersection E, and if the sequence
fails to converge pointwise at a point x, then x ∈ E. In particular, the nearly uniform limit
of a sequence of measurable functions is measurable. See Figure ?? for an example of nearly
uniform convergence which is not uniform.

Lemma 3.4.6. Suppose that fn : X → B and gn : X → B, fn → f and gn → g nearly
uniformly. Then the following limits also hold nearly uniformly:

1. fn + gn → f + g.

2. For every c ∈ C, cfn → cf .

3. If B = C, fngn → fg.

4. (x 7→ ||fn(x)||B)→ (x 7→ ||f(x)||B).

5. max(fn, gn)→ max(f, g).

6. min(fn, gn)→ min(fn, gn).

Proof. Routine and omitted.

Theorem 3.4.7 (Egorov). Let X be a finite measure space (thus µ(X) <∞) and suppose
that fn ∈M(X → B) almost converge to f , and the fn are measurable. Then fn → f nearly
uniformly.

Proof. After throwing away a harmless null set, we may assume that fn → f pointwise. Now
define

En
m = {x ∈ X : ∃k ≥ n(||f(x)− fk(x)||B ≥

1

m
)}.

Since x 7→ ||f(x)− fk(x)||B is measurable, by Theorem 3.3.8, Emn is measurable. Moreover,
if m is fixed, the En

m shrink as n increases and
⋂
nEmn = ∅, since fn → f . By Lemma

TODO, since |µ|(X) < ∞, limn µ(En
m) = 0. So for every ε > 0 and every m we may find

n(m) such that

µ(En(m)
m ) <

ε

2m
.

Now let F = E \
⋃
mE

n(m)
m , so

µ(E \ F ) ≤
∞∑
m=1

µ(En(m)
m ) < ε.

So it suffices to show that for every δ > 0 there is a N such that for every n > N , supF ||fn−
f ||B < δ. Indeed, if 1/m < δ and N = n(m), then for every x ∈ F , x /∈ Em

N , so if n > N
then ||f(x)− fn(x)||B < δ.
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Definition 3.4.8. A sequence of functions fn : X → B is said to be a nearly uniform
Cauchy sequence if for every ε > 0 there is a measurable set Eε such that µ(X \Eε) < ε and
for every δ > 0 there is an N such that for every n1, n2 > N , sup ||fn1 − fn2||B < δ.

3.4.9. Since the hypothesis of being nearly uniform Cauchy is not altered if we change the
functions fn on a null set, we can work with equivalence classes of functions (equivalent iff
equal almost everywhere) rather than functions themselves. This will be important when
we demand that the limit of a Cauchy sequence be unique; it will not be a unique function
everywhere, but only almost everywhere.

Lemma 3.4.10. Let fn ∈M(X → B) be a nearly uniform Cauchy sequence. Then there is
a unique f ∈M(X → B) such that fn → f nearly uniformly.

Proof. For every m we can find Em such that |µ|(X \Em) < 1/m and fn is uniformly Cauchy
on Em. Let E =

⋃
mEm. Then |µ|(X \ E) < 1/m for every m, so |µ|(X \ E) = 0, and

it is okay if we leave f undefined on X \ E. As for if x ∈ E, we can choose an m such
that x ∈ Em. Since the fn are a nearly uniform Cauchy sequence, the fn(x) are a Cauchy
sequence, which converge to some y ∈ B since B is a Banach space. Therefore we may let
f(x) = y.

Now the fn → f nearly uniformly. In fact, for every ε > 0 we may take m > 1/ε and let
Eε = Em. Then fn → f uniformly on Eε.

As for uniqueness, the fn → f almost pointwise, and pointwise limits are unique (so
that almost pointwise limits are unique almost everywhere). But f was only defined up to
measure zero, so this is no loss.

Definition 3.4.11. Let fn : X → B be a sequence of measurable functions, f : X → B.
We say that fn converges in measure to f if for every ε > 0 the set

lim
n→∞

|µ|({x ∈ X : ||fn(x)− f(x)||B > ε}) = 0.

If µ is a probability measure, we instead say that µ converges in probability .

3.4.12. We sometimes abbreviate the set in the above definition as {||fn − f ||B > ε}. In
other words, fn → f in measure iff for every ε > 0 and every δ > 0 there is an N such that
for every n > N ,

|µ|({||fn − f ||B > ε}) < δ,

and collapsing quantifiers this happens iff for every ε > 0 there is an N such that for every
n > N ,

|µ|({||fn − f ||B > ε}) < ε.

3.4.13. What is the intuition for convergence in measure? Suppose that we are scientists
running experiments in an attempt to compute the value of a function f . As the number
of test subjects n goes to infinity, the experimental data fn should converge to f , but in
what sense? Let X be the set of possible outcomes and P (E) the probability that one of the
outcomes in E occurs, thus P is a probablity measure. Then P ({||fn(x)−f(x)||B > ε}) is the
probability that we got an experimental error of size at least ε; as n→∞, this probability
becomes vanishingly small. However, on the off-chance that an error of size at least ε occurs,
we have no control over how bad the error may be! Thus fn → f in probability and a priori
we can prove no stronger.
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Lemma 3.4.14. If fn → f in measure, then f is unique almost everywhere, hence as an
element of M(X → B).

Proof. Suppose that fn → g in measure as well. Then for every ε > 0 and n,

{||f − g||B > ε} ⊆ {||f − fn||B > ε/2} ∪ {||g − fn||B > ε/2}.

If n is large enough, the right hand side has measure at most ε.

Definition 3.4.15. Let fn : X → B be a sequence of functions. We say that the fn are
Cauchy in measure if for every ε > 0 there is a N such that for every n1, n2 > N ,

|µ|({||fn1 − fn2||B > ε}) < ε.

Lemma 3.4.16. Suppose that fn : X → B and gn : X → B, fn → f and gn → g in
measure. Then the following limits also hold in measure:

1. fn + gn → f + g.

2. For every c ∈ C, cfn → cf .

3. If B = C, fngn → fg.

4. (x 7→ ||fn(x)||B)→ (x 7→ ||f(x)||B).

5. max(fn, gn)→ max(f, g).

6. min(fn, gn)→ min(f, g).

Proof. Routine and omitted.

3.4.17. How does convergence in measure relate to other modes of convergence? It does
not imply almost pointwise convergence — imagine a sequence of functions racing back and
forth along [0, 1], their supports getting smaller with every time they turn around. TODO:
Draw a picture. Nor does it follow from almost pointwise convergence on infinite measure
sets — just take fn = 1[n,n+1] as a counterexample. But convergence in measure is weaker
than nearly uniform convergence, hence from almost pointwise convergence on finite measure
sets. TODO: Draw a diagram.

Lemma 3.4.18. Suppose that fn → f nearly uniformly; then fn → f in measure.

Proof. Let ε > 0. Then there is a set Eε on which fn → f uniformly such that µ(X \Eε) < ε,
thus if n is large enough supEε |fn − f | < ε, so {||fn − f ||B > ε} ⊆ X \ Eε and hence
µ({||fn − f ||B > ε}) < ε. So fn → f in measure.

Corollary 3.4.19. If µ(X) <∞ and fn → f almost pointwise, then fn → f in measure.

Proof. By Egorov’s theorem and Lemma 3.4.18.

3.4.20. We now come to a critical result which implies that Cauchyness in measure not only
implies convergence in measure, but other modes of convergence as well. This result has
been called the Riesz-Weyl theorem or the fundamental theorem of integration.
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Theorem 3.4.21 (fundamental theorem of integration). Suppose that fn is a Cauchy se-
quence in measure. Then there is a subsequence of fnk and a unique f ∈ M(X → B) such
that:

1. The fnk are a nearly uniform Cauchy sequence.

2. fnk → f nearly uniformly.

3. fn → f in measure.

Proof. Let n1 = 1, and choose nk+1 > nk such that if m1,m2 ≥ nk+1, then

|µ|({||fm1 − fm2 ||B ≥ 2−k}) < 2−k.

Let gk = fnk .

Sublemma 3.4.22. gk is nearly uniformly Cauchy.

Proof. Let ε > 0 and choose K so that
∑

k≥K 2−k < ε. Let

F = X \
⋃
k≥K

{||gk − gk+1||B > 2−k}.

Then µ(X \ F ) < ε.
Now let δ > 0 and choose N so large that N ≥ K, 21−N < δ. Then if j > ` > N , x ∈ F ,

||gj(x)− g`(x)||B = ||gj(x)− gj−1(x) + gj−1(x)− gj−2(x) + · · ·+ g`+1(x)− g`(x)||B

≤
j−1∑
i=`

||gi+1(x)− gi(x)||B

≤
j−1∑
i=`

2−i < 21−N < δ.

Therefore the gk are a uniform Cauchy sequence on F and hence nearly uniform on X.

So by Lemma 3.4.10, there is an f such that limk gk = f nearly uniformly. But then
Lemma 3.4.18 implies that limk gk = f in measure. But

{||f − fn(x)||B > ε} ⊆ {||f − gk||B > ε/2} ∪ {||fn − gk||B > ε/2}, (3.1)

and the gk are a subsequence of the Cauchy-in-measure sequence fn, hence the right hand
side of (3.1) is < ε if n, k are large enough. So fn → f in measure. Uniqueness follows by
Lemma 3.4.14.

Corollary 3.4.23. If fn → f in measure, then there is a subsequence of fnk such that
fnk → f nearly uniformly.

Proof. The fn are Cauchy in measure, so the fundamental theorem of integration implies
that there is a subsequence that is nearly uniformly Cauchy. Uniqueness of a nearly uniform
limit implies that the subsequence must converge to f .

Exercise 3.4.24. Find an example which shows that the hypothesis of finite measure in
Egorov’s theorem cannot be omitted.
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3.5 Regularity of measurable functions

Before we define the integral, we pause to use Egorov’s theorem to prove a partial converse to
the theorem which said that every continuous function was measurable. Of course not every
measurable function is continuous (most measure spaces don’t even come with a topology,
but also, any familiar discontinuous function on R will be measurable), but we will do the
best that we can this section.

3.5.1. Throughout this section, fix a locally compact Hausdorff space X. If the reader is
not familiar with such notions, they can take X = Rc.

3.5.2. Recall that a function f : Rc → Cd is smooth if for every point x and every vector of
natural numbers (k1, . . . , kc), the partial derivative

∂k11 ∂
k2
2 · · · ∂kcc f(x)

exists; here ∂kii is the operator that takes a function to its kith partial derivative along its
ith basis vector. Clearly every smooth function is differentiable and hence continuous.

Lemma 3.5.3 (Urysohn). LetK0, K1 ⊆ X be disjoint closed sets. Then there is a continuous
function f : X → [0, 1] such that f |K0 = 0 and f |K1 = 1. Moreover, if X = Rc, we can even
assume that f is smooth.

3.5.4. We refer the reader to the appendix for the proof of Urysohn’s lemma. We will also
need the fact that every compact subset of a Hausdorff space is closed.

3.5.5. Now the open sets of X generate a topology, namely the Borel σ-algebra of X.
Therefore X is a measurable space in a natural way. By a Borel measure on X we mean a
measure defined on the Borel σ-algebra of X.

Lemma 3.5.6. Every continuous function is measurable with respect to the Borel σ-algebra.

Proof. Let f : X → B be continuous; then the f -preimage of an open set is open, hence
Borel, hence measurable. We now appeal to Theorem 3.3.8.

Definition 3.5.7. View X as a complete measured space (X,Σ, µ), where µ is a Borel
measure and Σ is the σ-algebra of µ-measurable sets (so that Σ is generated by the Borel
sets and µ-null sets). Let f : X → B be a function. We say that f is a nearly continuous
function if for every ε > 0 there is a set E such that µ(X \ E) < ε and f |E is continuous.

3.5.8. You should check that your favorite discontinuous function (that isn’t the indicator
function of the Vitali set) is nearly continuous. For example the function x 7→ 1/x is nearly
continuous because if we discard a small neighborhood of 0, then it is continuous.

3.5.9. Throughout the rest of the section, we fix a positive Radon measure µ on X, and take
its completion, so if Σ denotes the σ-algebra generated by Borel sets and µ-null sets, then
(X,Σ, µ) is a complete measured space, which we also denote by X. Thus X is equipped
with a topology, a σ-algebra, and a measure; so X is a lot like the real line R, and when we
refer to measurable functions, nearly continuous functions, and so on, we do so with respect
to Σ.
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Lemma 3.5.10. If f : X → Cd is a measurable function, then there is a sequence of
continuous functions fn : X → Cd such that fn → f almost pointwise. If X = Rc then we
can even take the fn to be smooth.

Proof. We first check this when f is the indicator function of a compact set K. By outer
regularity, for every n there is an open set Un ⊇ K such that µ(Un \ K) < 1/n, and after
taking intersections we can assume that Un ⊇ Un+1. The complement X \ Un is closed, so
by Urysohn’s lemma there is a continuous function fn : X → [0, 1], smooth if X = Rc, such
that fn|K = 1 and fn|(X \ Un) = 0. Now fn → f almost pointwise. Indeed, if x ∈ K, then
for every n, fn(x) = 1; otherwise, unless x is in

⋂
n Un \K, which is a null set, there is an

N such that x /∈ UN , and hence for every n > N , x /∈ Un, so fn(x) = 0. TODO: Draw a
picture.

We now check when f is the indicator function of an open set U . By inner regularity,
there is a sequence of compact sets Km such that Km ⊆ Km+1 and µ(U \Km) < 1/m. In
particular, limm 1Km = 1U almost pointwise. Now there are sequences of continuous functions
(smooth if X = Rc) fmn : X → [0, 1] such that limn f

m
n = 1Km almost pointwise, thus

|fnn (x)− 1U(x)| ≤ |fnn (x)− 1Kn(x)|+ |1Kn(x)− 1U(x)|.

The right-hand side vanishes as n → ∞ so fnn → 1U almost pointwise. TODO: Draw a
picture.

A similar argument applies when f is the indicator function of a Borel set W . Indeed, by
outer regularity, there is a sequence of open sets Um such that Um ⊇ Km+1, µ(Um\W ) < 1/m.
We can find a sequence of continuous (smooth?) functions fmn : X → [0, 1] such that
limn f

m
n = 1Um almost pointwise, and limm 1Um = 1W almost pointwise, so fnn → 1W almost

pointwise.
If f is the indicator function of a measurable set, then we can modify f on a null set and

replace it with the indicator function of a Borel set.
If f ∈ Simp(X → C), then f is a linear combination of indicator functions of measurable

sets f1, . . . , fn, so we can find sequences approximating each of the summands fi and use
linearity.

If f is an arbitrary measurable function X → C, we can approximate f by simple
functions.

If f is a vector of measurable functions X → Cd, we can approximate each of the
components of f by continuous (smooth?) functions.

Theorem 3.5.11 (Luzin). If µ(X) <∞, then a function f : X → Cd is measurable iff f is
nearly continuous.

Proof. If f is nearly continuous, then for every ε > 0 we can find a set Eε on which f is
continuous, hence measurable, and µ(X \ Eε) < ε. Taking their union, we conclude that
f is measurable at almost every point of X, and hence everywhere on X. Note that this
direction was already valid for any Borel measure and any Banach space codomain.

Conversely, suppose that f is measurable. By Lemma 3.5.10, we can find a sequence of
continuous (or even smooth) functions fn with fn → f almost pointwise, and hence nearly
uniformly by Egorov’s theorem. The uniform limit of a sequence of functions is continuous,
so the nearly uniform limit is nearly continuous.
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Exercise 3.5.12. Show that there exists a measurable function on Rd which is not nearly
smooth.

Exercise 3.5.13. Let µ be a σ-finite positive Radon measure on Rd. Show that for every
Borel set A such that µ(A) > 0, there is an R > 0 such that 0 < µ(B(0, R)∩A) <∞. Since
this is in particular true for Lebesgue measure, it is often no loss of generality to suppose
that the sets one is working with have finite Lebesgue measure.

Exercise 3.5.14. Let µ be Lebesgue measure on R. Show that there is a Borel set A ⊆ [0, 1]
such that for every open interval U ⊆ [0, 1], 0 < µ(A ∩ U) < µ(U). (Hint: Start with a fat
Cantor set, c.f. Exercise 1.5.23, and then put more fat Cantor sets in the leftover intervals,
but be careful.)

Exercise 3.5.15. Let µ be Lebesgue measure on R. Let A ⊆ R be a Borel set such that
µ(A) > 0. Show that for every ε > 0 there is an open interval U such that µ(U ∩ A) >
(1− ε)µ(U). (Hint: Use the pigeonhole principle.)

Exercise 3.5.16. Prove Steinhaus’ theorem: Let A be a Borel subset of R with positive
Lebesgue measure. Then the set {x − y : (x, y) ∈ A2} contains an open set U such that
0 ∈ U .

Exercise 3.5.17. Let G ⊂ R be a proper subgroup of R under addition. Show that if G is
Borel then G is null. (Hint: use Exercise 3.5.16, Steinhaus’ theorem).

3.6 Integration of simple functions

We are ready to define the integral, at least for simple functions.

3.6.1. A priori, our intuitive definition of integration as “the net signed area under the
graph” is problematic. Consider the function f = 1[0,∞) − 1(−∞,0]. What is the net signed
area under the graph of f? Well, to the left of 0, it is −∞, and to the right it is +∞, so we
run into our usual pesky foe,∞−∞. To put off this problem for now, we dodge the issue by
declaring that we will for now only try to integrate functions whose integrals will be finite.

3.6.2. For the rest of the chapter, fix a measure µ, either valued in C (which is a one-
dimensional Banach space) or (−∞,∞]. The reason that we do not allow µ to be more
generally vector-valued is that we need to be able to multiply elements of the Banach space
B by µ(E).

Definition 3.6.3. An integrable simple function is a function f ∈ Simp(X → B) such
that for every nonzero b in the image of f , f−1(b) has finite measure. We denote the set of
integrable simple functions by ISF(X → B).

3.6.4. We want the integral to be, at first, a linear map ISF(X → B) → B. To motivate
it, let’s suppose that B = C, X = R, µ is Lebesgue measure, and E is an interval. Then∫∞
−∞ 1E had better be the area of the rectangle E × [0, 1] (TODO draw a picture), hence∫∞
−∞ 1E = µ(E). In order for linearity to hold, if c ∈ C, we must then have

∫∞
−∞ c1E = cµ(E).
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3.6.5. For every integrable simple function f , f can be written in terms of the indicator
functions in a unique way; namely, if {b1, . . . , bn} is the image of f ,

f(x) =
n∑
i=1

bi1f−1(bi)(x). (3.2)

In particular, the indicator functions span ISF(X → C).

Definition 3.6.6. We call (3.2) the canonical representation of the integrable simple function
f with image {b1, . . . , bn}.

Definition 3.6.7. Let f ∈ ISF(X → B) and suppose that (3.2) is the canonical represen-
tation of f . Let E be a measurable set. We define the integral of f to be∫

E

f dµ =
n∑
i=1

biµ(f−1(bi) ∩ E).

3.6.8. We will occasionally write
∫
f or similar to mean

∫
X
f dµ, but only when X and

µ are understood. If we need a dummy variable, we may write
∫
E
f(x) dµ(x), and if µ is

understood we may even write
∫
E
f(x) dx. If E is an interval [a, b], we may write

∫ b
a

to mean∫
E

. For example, once we will have adequately defined integration,∫ 2π

0

sinx dx = 0

as one would expect.

Lemma 3.6.9. Let f, g ∈ ISF(X → B). Then:

1. Linearity : For every c ∈ C,∫
X

cf + g dµ = c

∫
X

f dµ+

∫
X

g dµ.

2. The triangle inequality :∣∣∣∣∣∣∣∣∫ f(x) dµ(x)

∣∣∣∣∣∣∣∣
B

≤
∫
||f(x)||B d|µ|(x).

3. The change-of-variables formula: Let (Y, ν) be a measured space. Suppose that h :
Y → X is a measurable map and µ is the pushforward measure µ = h∗ν. Then∫

X

f dµ =

∫
Y

f ◦ h dν.

4. If B = R and f ≤ g, then
∫
f ≤

∫
g.
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5. If E,F are disjoint measurable sets, then∫
E∪F

f =

∫
E

f +

∫
F

f.

6. If E ⊆ F are measurable sets, B = R, and µ is a nonnegative measure, then∫
E

f dµ ≤
∫
F

f dµ.

7.
∫
||f(x)||B d|µ|(x) = 0 if and only if f = 0 almost everywhere.

Proof. See Exercise 3.6.19.

3.6.10. We want to extend the integral from ISF(X → B) to the space M(X → B) of
all measurable functions. But we cannot merely define

∫
f = limn fn, where the fn are

simple functions that converge to f . Indeed, if fn = 1[n,n+1] then fn → 0 pointwise, but
limn

∫
fn = 1, and we certainly do not want

∫
0 = 1! We need another notion of convergence,

which will turn out to be closely related to convergence in measure.

Definition 3.6.11. Given f ∈ ISF(X → B), let

||f ||1 =

∫
X

||f(x)||B d|µ|(x). (3.3)

One calls ||f ||1 the L1-norm of f .

3.6.12. As the reader should check, the L1 norm is a seminorm. See Exercise 3.6.20. Now
when we say that fn → f in L1, we mean that ||fn − f ||1 → 0. Similarly if we say that the
fn are Cauchy in L1, we mean that ||fn − fm||1 → 0.

3.6.13. It is natural to want to extend the L1 norm to the completion of the space ISF(X →
B), on which it will actually be a norm. (See Theorem A.2.7 for more on that.)

Definition 3.6.14. The completion of ISF(X → B) is known as L1(X → B).

3.6.15. Formally, L1(X → B) consists of Cauchy sequences of simple functions modulo
Cauchy equivalence. We will define the integral as a linear map L1(X → B)→ B:

Definition 3.6.16. Let f ∈ L1(X → B) and suppose that E is a measurable set. Choose a
Cauchy sequence of fn ∈ ISF(X → B) such that fn → f in L1. We define the integral of f
to be ∫

E

f dµ = lim
n→∞

∫
E

fn dµ.

3.6.17. Let’s check that Definition 3.6.16 makes sense. When we say that fn → f in L1, we
mean that f is the equivalence class of the Cauchy sequence (fn)n. So if there was another
Cauchy sequence (gn)n with gn → f in L1,∣∣∣∣∣∣∣∣ lim

n→∞

∫
E

gn − fn dµ
∣∣∣∣∣∣∣∣ ≤ lim

n→∞

∫
E

||gn(x)− fn(x)||B d|µ|(x)

≤ lim
n→∞

∫
X

||gn(x)− fn(x)||B d|µ|(x)

= lim
n→∞

||gn − fn||1 = 0,
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the last equality following because the gn and the fn are Cauchy equivalent. Therefore the
choice of Cauchy sequence in Lemma 3.6.16 is immaterial, and any choice will return the
same integral. As a consequence, the L1 norm extends to all of L1(X → B) by the equation
(3.3).

Lemma 3.6.18. The conclusion of Lemma 3.6.9 holds for any f, g ∈ L1(X → B), not just
f, g ∈ ISF(X → B).

Proof. Left as Exercise 3.6.21.

Exercise 3.6.19. Prove Lemma 3.6.9.

Exercise 3.6.20. Show that the L1-norm is a seminorm on ISF, and that ||f ||1 = 0 iff
f = 0 almost everywhere.

Exercise 3.6.21. Prove Lemma 3.6.18.

Exercise 3.6.22. Let A = {1, . . . , d} with counting measure. Therefore every function
A → R is an integrable simple function, and we can identify f ∈ ISF(A → R) with the
vector (f(1), . . . , f(d)). So we can identify ISF(A → R) with Rd. Show that the topology
induced by the L1-norm on Rd is the usual euclidean topology on Rd. What is the unit ball
in the L1-norm shaped like?

3.7 The integral in general

The conclusion of the previous section, wherein we treated the integral on L1(X → B), was
really quite silly. We want to integrate functions, not equivalence classes of Cauchy sequences
of simple functions. This is analogous to how we want to study real numbers, not equivalence
classes of Cauchy sequences of rational numbers. We need some sort of isomorphism which
sends functions to members of L1.

Theorem 3.7.1 (fundamental theorem of integration, part II). Suppose that fn → f in L1.
Then there is a function f ′ such that fn → f ′ in measure and there is a subsequence of fnk
such that fnk → f ′ nearly uniformly, and hence almost pointwise.

Proof. We have to show that the fn are Cauchy in measure; the other claims follow from the
first part of the fundamental theorem of integration.

To see that the fn are Cauchy in measure, we reason by contraposition, so suppose that
we are given a subsequence fkn and a ε > 0 such that for every n,m,

{||fkm − fkn||B > ε} > ε.
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Then

||fkm − fkn ||1 =

∫
X

||fkm(x)fkn(x)||B dµ(x)

≥
∫
{||fkm−fkn ||B>ε}

||fkm(x)fkn(x)||B dµ(x)

≥
∫
{||fkm−fkn ||B>ε}

ε dµ(x)

= ε

∫
{||fkm−fkn ||B>ε}

dµ(x)

= ε|µ|({||fkm − fkn||B > ε}) > ε2 > 0.

Therefore the fn are not Cauchy in L1, so they do not converge in L1.

3.7.2. Now if fn → f in L1 and fn → f ′ in measure, then it is tempting to identify f ′ with
f , but we need to check that the choice of L1 Cauchy sequence does not matter.

Theorem 3.7.3 (fundamental theorem of integration, part III). Suppose that fn → f in L1

and fn → f ′ in measure. If gn → f in L1, then gn → f ′ in measure. Conversely, if the gn
are Cauchy in L1 and gn → f ′ in measure, then gn → f in L1.

Proof. Suppose that gn → f in L1. Then the sequence (f1, g1, f2, g2, . . . ) is Cauchy in L1,
hence Cauchy in measure; but it has a subsequence which converges in measure to f ′ in
measure, so the mother sequence must also converge in measure to f ′, and hence every
subsequence, including the gn, must converge in measure to f ′.

As for the converse, we use part I of the fundamental theorem of integration to show
that there are subsequences fnk , gnk which converge nearly uniformly to f ′, and are Cauchy
in L1. Let hk = fnk − gnk . Then the hk is Cauchy in L1, converge nearly uniformly to 0, and
if hk → 0 in L1 then the fnk and gnk are Cauchy equivalent.

Lemma 3.7.4. hk → 0 in L1.

Proof. Let ε > 0, and choose N so that if n1, n2 ≥ N then ||hn − hm||1 < ε. We claim that
||hN ||1 . ε where the implied constant only depends on the sequence and not on the index
N , so that if n > N then

||hn||1 ≤ ||hn − hN ||1 + ||hN ||1 . ε.

But hN ∈ ISF(X → B), so the carrier E of hN satisfies µ(E) < ∞, and hN is bounded,
thus ||hN(x)|| . 1, where the implied constant does not depend on x or the index N , but
only on the sequence.

Since hn → 0 nearly uniformly, there is a measurable set F ⊆ E such that |µ|(E \F ) < ε
and hn → 0 uniformly on F . Therefore∫

E\F
||hn(x)||B d|µ|(x) .

∫
E\F
|µ|(x) = |µ|(E \ F ) < ε.
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Meanwhile, if N is large enough, then ||hN(x)||B < ε for every x ∈ F ,∫
F

||hN(x)||B d|µ|(x) < ε|µ|(F ) ≤ ε|µ|(E).

So

||hN ||1 =

∫
X

||hN(x)||B d|µ|(x) . ε

which was to be shown.

Hence the fnk and gnk are Cauchy equivalent. Since the mother sequences fn and gn
are Cauchy, if they have subsequences that are Cauchy equivalent, then the fn and gn are
Cauchy equivalent, so since fn → f in L1, gn → f in L1.

3.7.5. Summarizing, if f ∈ L1, then there is an f ′ ∈ M with the following property: for
every L1 Cauchy sequence fn ∈ ISF such that fn → f in L1, such that fn → f ′ in measure,
nearly uniformly along a subsequence, and almost pointwise along a subsequence. Moreover,
L1 is the completion of ISF, so such a L1 Cauchy sequence must exist.

Corollary 3.7.6. Let f ∈M , and suppose the fn ∈ ISF are an L1 Cauchy sequence. Then
the following are equivalent:

1. fn → f in measure.

2. fn → f nearly uniformly.

3. fn → f almost everywhere.

Proof. That 1 implies 2 implies 3 is the content of the fundamental theorem of integration.
Now if fn → f almost everywhere, Egorov’s theorem furnishes a subsequence fnk which
converges to f nearly uniformly, hence in measure. But the fn are Cauchy in L1, hence
in measure; if the mother sequence is Cauchy and a subsequence converges, the mother
sequence converges, so fn → f in measure.

3.7.7. Elements of M are functions up to the equivalence relation of being equal almost
everywhere. That is,

M =
M
N

whereM is the space of all measurable functions and N is the space of measurable functions
which are zero almost everywhere. Therefore if fn → f in L1 and fn → f ′ in measure
(equivalently, nearly uniformly, or almost everywhere), we can actually identify f with f ′

and think of f ′ as a “function” by choosing a version of f ′. Henceforth we will not make a
distinction between elements of L1, elements f of M which admit an L1 Cauchy sequence
of simple functions which converge to f in measure, and versions of f . Therefore we are
(finally!) ready to define the integral in general.
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Definition 3.7.8. Let f ∈ M(X → B), and suppose that there is a L1 Cauchy sequence
fn ∈ ISF(X → B) such that fn → f in measure. Then we say that f ∈ L1(X → B), define
for any measurable set E the integral∫

E

f dµ = lim
n→∞

∫
E

fn dµ,

and the L1 norm

||f ||1 =

∫
X

||f(x)||B d|µ|(x).

If the integral
∫
X
f dµ exists, we say that f is integrable or summable.

Theorem 3.7.9. Let f, g ∈ L1(X → B). Then:

1. Linearity : For every c ∈ C,∫
X

cf + g dµ = c

∫
X

f dµ+

∫
X

g dµ.

2. The triangle inequality :∣∣∣∣∣∣∣∣∫
X

f(x) dµ(x)

∣∣∣∣∣∣∣∣
B

≤
∫
X

||f(x)||B d|µ|(x).

3. The change-of-variables formula: Let (Y, ν) be a measured space. Suppose that h :
Y → X is a measurable map and µ is the pushforward measure µ = h∗ν. Then∫

X

f dµ =

∫
Y

f ◦ h dν.

4. If B = R and f ≤ g, then
∫
f ≤

∫
g.

5. If E,F are disjoint measurable sets, then∫
E∪F

f =

∫
E

f +

∫
F

f.

6. If E ⊆ F are measurable sets, B = R, and µ is a nonnegative measure, then∫
E

f dµ ≤
∫
F

f dµ.

7.
∫
||f(x)||B dµ(x) = 0 if and only if f = 0 almost everywhere.

Proof. This follows from the previous version of the theorem by density in L1.

3.7.10. We can extend the definition of the integral even further. If f ∈ M(X → B) has a
nonnegative version, we write f ≥ 0.
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Definition 3.7.11. Let f ∈ M(X → B), and assume that f ≥ 0. Let E be a measurable
set. If for every L1 Cauchy sequence fn ∈ ISF(X → B), fn does not converge to 1Ef in
measure, then we write ∫

X

f dµ =∞

provided that µ is a nonnegative measure.

3.7.12. Now if f ∈ M(X → C), we can write f = fa + ifb where fa, fb are real-valued,
and

∫
f =

∫
fa + i

∫
fb. So integration of complex-valued functions reduces to integration

of real-valued functions. Moreover, if f is real-valued then we can write f = f+ − f− where
f± ≥ 0. So

∫
f =

∫
f+ −

∫
f−. This makes sense even if one (but not both!) of the

∫
f±

is infinite. Thus the only measurable functions which cannot be integrated are those whose
integrals would be∞−∞. That’s a far cry from the Riemann integral, whose definition was
quite restricted!

3.7.13. While in practice we identify functions which are equal almost everywhere, some-
times it is convenient to work with functions, rather than their equivalence classes. Recall
that M is the space of measurable functions; analogously we let L1 denote the space of
functions whose equivalence classes are in L1. If f ∈ L1, we let [f ] denote the equivalence
class of f and define ∫

E

f dµ =

∫
E

[f ] dµ.

This definition then extends to those elements of M whose integral is not ∞−∞. Notice
that || · ||1 is a seminorm on L1, and a norm on L1.

3.7.14. Let us now recast the above in the language of probability theory.

Definition 3.7.15. Let (Ω, P ) be a probability space. Let X be a random variable of type
B on Ω. The expected value of X is

EX =

∫
Ω

X dP

provided that X ∈ L1. If in addition X2 ∈ L1 and B = R, then the variance of X is

VarX = E((X − EX)2).

The standard deviation of X is
√

VarX.

Exercise 3.7.16. Let µ be a positive measure. Prove Chebyshev’s inequality , which says
that if f ∈M , then for any t > 0 and p > 0,

µ(||f(x)||B ≥ t) ≤ t−p
∫
||f ||B≥t

||f ||pB dµ.

Here ||f ||B ≥ t is the set {x ∈ X : ||f(x)||B ≥ t}.

Exercise 3.7.17. Let δx be the Dirac measure at x ∈ R, as in Exercise 1.5.19. Show that
every function f : R→ B is Dirac measurable and compute the integral

∫
R f dδx.
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Exercise 3.7.18. Let X be a random variable of type R. Show that

VarX = E(X2)− (EX)2 ≥ 0

with equality iff X is almost surely constant, as long as the definition of VarX makes sense.

Exercise 3.7.19. Let X be a random variable of type R and distribution µ. Show that

EX =

∫ ∞
−∞

x dµ(x)

as long as the definition of EX makes sense.



Chapter 4

Properties of integration

In the previous chapter we defined integration. Now we show that integration is quite robust;
most importantly, it commutes with most types of limits. Integration with Lebesgue measure
also agrees with the Riemann integral whenever the Riemann integral is defined.

4.1 Integrable functions

Let us treat the properties of integrable functions. Throughout this section, let X = (X,Σ, µ)
be a complete measured space, B a Banach space, and L1 = L1(X → B). We view L1 as
the space of integrable functions L1 modulo the space of functions f with ||f ||1 = 0, but by
the fundamental theorem of integration, L1 is naturally isomorphic to the completion of the
space ISF of integrable simple functions.

Lemma 4.1.1. Let fn be an L1 Cauchy sequence and f ∈M . Then fn → f nearly uniformly
iff fn → f in measure iff fn → f in L1.

Proof. This was already true for ISF, and L1 is the completion of ISF.

Lemma 4.1.2. If fn → f in L1, then
∫
fn →

∫
f .

Proof. We have∣∣∣∣∣∣∣∣∫
E

fn dµ−
∫
E

f dµ

∣∣∣∣∣∣∣∣
B

≤
∫
E

||fn(x)− f(x)||B d|µ|(x) = ||fn − f ||1

which converges to 0.

4.1.3. If f, f ′ are versions of the same element of M , then their carriers C,C ′ are equal up
to a set of measure zero; indeed, the set of points x such that f(x) = 0 but f ′(x) 6= 0 is null,
but that set is C \C ′. Thus we can speak of the carrier of an equivalence class of functions,
which is a set modulo sets of measure zero.

Lemma 4.1.4. If f ∈ L1, then the carrier of f is σ-finite.

Proof. Let fn ∈ ISF, fn → f . Then the fn have finite-support carriers Cn, and the carrier
of f is contained in the union

⋃
nCn.

77
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Lemma 4.1.5. Let f ∈ L1. Then for every ε > 0 there is a measurable set E such that
|µ|(E) <∞ and ∫

X\E
||f(x)||B d|µ|(x) < ε.

Proof. Let g ∈ ISF, ||f − g||1 < ε. Let E be the carrier of g. Then g = 0 on X \ E, so∫
X\E
||f(x)||B d|µ|(x) =

∫
X\E
||f(x)− g(x)||B d|µ|(x) ≤ ||f − g||1 < ε.

Definition 4.1.6. Let f ∈ M . We say that f is almost bounded , or f ∈ L∞, if there is a
version of f which is bounded. In that case, we define the L∞ norm of f by

||f ||∞ = inf
f ′

sup
x∈X
||f(x)||B

where the inf is taken over all versions f ′ of f such that f ′ is bounded.

4.1.7. We leave it to the reader to check that L∞ is a vector space and || · ||∞ is a norm.

Lemma 4.1.8. L∞ is a Banach space.

Proof. We are given an L∞ Cauchy sequence of fn ∈ L∞, then we can choose bounded
versions f ′n, and for almost every x ∈ X,

||f ′n(x)− f ′m(x)||B ≤ ||fn − fm||∞ → 0

so the f ′n(x) form a Cauchy sequence in the Banach space B, and hence converge to a vector
that we call f(x). We claim that f ′n → f almost uniformly; that is, there is a null set away
from which f ′n → f uniformly. Indeed, given ε > 0 we can find N such that for almost every
x and every n1, n2 > N , ||f ′n1

(x) − f ′n2
(x)||B < ε; this implies that ||f ′n(x) − f(x)||B < ε if

n > N . Therefore
||fn − f ||∞ ≤ sup

x
||f ′n(x)− f(x)||B < ε

where the sup is taken over all x on the set on which f ′n → f uniformly, hence over almost
every x ∈ X.

4.1.9. The space L∞ is defined to be the space of all versions of all elements of L∞, and on
L∞, || · ||∞ is a seminorm. Its normalization is L∞.

4.1.10. It is worth contrasting the norms L1 and L∞. L1 only cares about the “area under
the graph”; a function f whose graph is a narrow but very tall spike is tiny in L1. Meanwhile
L∞ only cares about “height of the graph”; that same function f would have an enormous
L∞ norm. On the other hand, a function which is very wide but shallow would be tiny in
L∞ but huge in L1. See Figure ??. Later we will define Lp norms which serve as a “weighted
average” between the two extremes.
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Figure 4.1: The blue function is large in L1 but small in L∞, since it is wide but shallow.
The green function, meanwhile, is large in L∞ but small in L1, since it is tall but slender.

Lemma 4.1.11. The space L1 ∩ L∞ of almost bounded integrable (equivalence classes of)
functions is dense in L1.

Proof. One has ISF ⊆ L1 ∩ L∞ ⊆ L1, but ISF is dense in L1, so L1 ∩ L∞ is as well.

4.1.12. How are the L∞ and L1 norms related? Well, if the measure of X is finite, then the
graph of the function cannot be “too wide”, as our next lemma shows.

Lemma 4.1.13. If µ(X) <∞ then

||f ||1 ≤ µ(X)||f ||∞.

Proof. We check

||f ||1 ≤
∫
X

||f(x)|| dµ(x) ≤
∫
X

||f ||∞ dµ = ||f ||∞
∫
X

dµ = ||f ||∞µ(X).

Easy as that!

4.1.14. Conversely, if the graph of the function cannot be “too skinny”, then we have the
opposite bound. To make this precise, we need the notion of a “granular measure”.

Definition 4.1.15. A granular measure is a measure µ such that there is a δ > 0 such that
for every measurable set E, either E = ∅ or |µ|(E) ≥ δ.

4.1.16. For example, counting measure is δ-granular, with δ = 1. Another example is
Lebesgue measure restricted to the σ-algebra generated by the intervals [n, n + 1], which is
also 1-granular.

Lemma 4.1.17. If µ is δ-granular, then

||f ||∞ ≤
||f ||1
δ

.
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Figure 4.2: A typical continuous function on the compact set [0, 1]. Both the L1 and L∞

norms are finite (and, in fact, are less than 36).

Proof. If f = 0 almost everywhere, then both sides of the claimed equation are 0. Otherwise,
let En = {||f || > ||f ||∞ − 1/n}; then µ(En) ≥ δ and En ⊇ En+1, so let E =

⋂
nEn; either

|µ|(En) < ∞ for some n or |µ|(En) = ∞ for all n. In the latter case, there is an n large
enough that ||f ||∞ − 1/n > 0 and

||f ||1 ≥
∫
En

||f(x)||B d|µ|(x) ≥ (||f ||∞ −
1

n
)|µ|(E) =∞

and there is nothing to prove. Otherwise, |µ|(E) = limn |µ|(En) ≥ δ and

||f ||1 ≥
∫
E

||f(x)|| d|µ|(x) ≥ ||f ||∞δ,

proving the claim.

4.1.18. Let us now show that for Radon measures, and in particular Lebesgue measure, con-
tinuous functions are integrable on compact sets, as in Figure ??. If the reader is unfamiliar
with locally compact Hausdorff spaces, they may as usual take X = Rd and µ Lebesgue
measure.

Definition 4.1.19. Let X be a locally compact Hausdorff space, and suppose that µ is a
Radon measure onX. A locally integrable function is a function f such that for every compact
set K, f |K is an integrable function on K. The space of locally integrable functions modulo
null sets is denoted L1

l . A almost locally bounded function is a function f such that for every
compact set K, f |K is almost bounded on K. The space of almost locally bounded functions
modulo null sets is denoted L∞l .

Lemma 4.1.20. Let X be a locally compact Hausdorff space, and suppose that µ is a Radon
measure on X. Let f be a continuous function; then f ∈ L1

l ∩ L∞l .
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Proof. First note that every continuous function is bounded on a compact set K. Therefore
f ∈ L∞l , and since µ is Radon, |µ|(K) <∞; therefore∫

K

||f(x)|| d|µ|(x) ≤ sup
x∈K
||f(x)|| · |µ|(K) <∞.

Therefore f ∈ L1
l .

Exercise 4.1.21. Show that every set with Jordan content (see Exercise 1.1.24) is Borel.

4.2 Indefinite integrals

In calculus, one defined the indefinite integral g of a continuous function f : [a, b] → R by
the relation

g(x) =

∫ x

a

f(t) dt.

By the fundamental theorem of calculus, g is differentiable and g′ = f . So we would like
to define the indefinite integral of an arbitrary measurable function, and we would like it to
have good regularity properties, but this is problematic; we used the order structure of R
to choose the interval [a, x], but there is no such thing as an order on an arbitrary measure
space, and there is no such thing as a differentiable function on an arbitrary measure space
either.

But what if we thought of the indefinite integral as a function of the set [a, x] rather
than the number x? As it turns out, this will fix both problems, and also the pesky issue of
needing to choose a (the somewhat arbitrary choice of a being the reason for the constant
of integration that has caused calculus students so much grief).

4.2.1. Throughout, let X = (X,Σ, µ) be a complete measured space, with µ valued in
(−∞,∞] or C, and B a Banach space.

Definition 4.2.2. Let f ∈M and suppose that
∫
f is defined. For every measurable set E,

define

ν(E) =

∫
E

f dµ.

We call ν the indefinite integral of f . We also write f = dν/dµ and call f the Radon-
Nikodym derivative of ν. If ν is a measure which is an indefinite integral, we say that ν is
Radon-Nikodym differentiable.

4.2.3. The hypothesis that
∫
f is defined rules out the possibility that ν(E) = ∞−∞. It

is satisfied, for example, if f ∈ L1 or f ≥ 0.

Lemma 4.2.4. Let f, g ∈M . Suppose that the indefinite integrals νf , νg of f, g are defined.
Then for every measurable set E,

||νf (E)− νg(E)||B ≤ ||f − g||1.
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Proof. One checks

||νf (E)− νg(E)||B =

∣∣∣∣∣∣∣∣∫
E

f − g dµ
∣∣∣∣∣∣∣∣ ≤ ||f − g||1

which proves the claim.

Theorem 4.2.5. Suppose that f ∈ L1, and ν is the indefinite integral of f . Then ν is a
finite measure.

Proof. Finiteness follows from f ∈ L1, so we just need to check that ν is countably additive.
We first check this when f ∈ ISF. Indeed, if f = b1E is the canonical representation of f
and the Fj are a sequence of disjoint measurable sets with union F , then

ν(F ) = bµ

(
E ∩

⋃
j

Fj

)
=
∑
j

bµ(E ∩ Fj) =
∑
j

ν(Fj).

Otherwise, f is a linear combination of functions with canonical representation of the form
b1E and the claim still follows.

Now if f ∈ L1, then for every ε > 0 there is a g ∈ ISF such that ||f−g||1 < ε; let ρ be the
indefinite integral of g. Then for every measurable set E, ||ν(E)− ρ(E)||B ≤ ||f − g||1 < ε.

If all but finitely many of the Fj are empty, then there is an N such that

ν(F ) =

∫
F

f dµ =
∑
j<N

∫
Fj

f dµ =
∑
j<N

ν(Fj) =
∑
j

ν(Fj).

So it suffices to show that as N → ∞, the partial sum
∑

j<N ν(Fj) converges to ν(F ). Let

FN =
⋃
j<N Fj, so ν(FN) =

∑
j<N ν(Fj).

We already showed that ρ is a measure, so if N is large enough then for every n > N ,

||ρ(F )− ρ(FN)||B < ε.

In particular,

||ν(F )− ν(FN)||B ≤ ||ν(F )− ρ(F )||B + ||ρ(F )− ρ(FN)||B + ||ρ(FN)− ν(FN)||B < 3ε.

This implies ν(FN)→ ν(F ).

Radon-Nikodym differentiable measures have a particularly easy-to-understand total vari-
ation.

Theorem 4.2.6. Let ν be a Radon-Nikodym differentiable measure. Then for any measur-
able set E,

|ν|(E) =

∫
E

∣∣∣∣∣∣∣∣dνdµ(x)

∣∣∣∣∣∣∣∣ d|µ|(x).
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Proof. Let f = dν/dµ.
Suppose that E is a measurable set and E =

⋃
iEi, a finite disjoint union. Then

∑
i

||ν(Ei)|| =
∑
i

∣∣∣∣∣∣∣∣∫
Ei

f dµ

∣∣∣∣∣∣∣∣ ≤ ∫
E

||f(x)|| dµ(x).

Taking the supremum over all such finite disjoint unions we see that |ν|(E) ≤
∫
E
||f ||.

We first check the converse when f ∈ ISF. Let f =
∑

i≤k bi1Fi where the Fi are disjoint.
Let F =

⋃
i Fi. Let us write E ∩ Fi =

⋃
j≤ni Gij where the Gij are disjoint. Then

|ν|(E) ≥
∑
i,j

||ν(Gij)||B =
∑
i,j

||bi||B|µ(Gi,j)| =
∑
i

||bi||B
∑
j

|µ(Gij)|.

That is,

|ν|(E) ≥
∫
E

||f(x)|| d|µ|(x).

In general, if f, g ∈ L1 are the derivatives of ν, λ respectively, then

||ν|(E)− |λ||(E) ≤ |ν − λ|(E) ≤
∫
E

||(f − g)(x)||B d|µ|(x) ≤ ||f − g||L1 ,

by the reverse triangle inequality, Theorem 1.6.7. Now a straightforward approximation
argument shows that the ISF case extends to all of L1.

Definition 4.2.7. A measure ν is absolutely continuous with respect to µ if for every ε > 0
there is δ > 0 such that for every measurable set E, if |µ|(E) < δ, then |ν|(E) < ε.

Theorem 4.2.8. For every f ∈ L1, the indefinite integral of f is absolutely continuous.

Proof. Let ε > 0 be given. Since ISF ⊆ L1 ∩L∞, there is g ∈ L∞ such that ||f − g||1 ≤ ε/2.
Suppose that E is a measurable set such that |µ|(E) < ε/2||g||∞. Then∫

E

||f(x)|| d|µ|(x) ≤ ||f − g||1 +

∫
E

||g(x)|| d|µ|(x)

≤ ||f − g||1 + |µ|(E)||g||∞ ≤ ε

which completes the proof.

4.2.9. Later we will show the Radon-Nikodym theorem, which says that a measure ν is
absolutely continuous iff every µ-null set is automatically ν-null, which happens iff ν is
differentiable.

4.3 Convergence theorems

One of the cornerstone of calculus and its applications is the ability to interchange an integral
with another sort of limit. Unfortunately, this sort of manuever is not valid in general.
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Example 4.3.1. Let fn = 1[n,n+1]. Then fn → 0 pointwise but

lim
n→∞

∫ ∞
−∞

fn(x) dx = 1.

4.3.2. Roughly speaking, there are two settings in which it is acceptable to commute an
integral with a limit. For one, if all functions involved are “dominated” by some function in
L1, then it is usually safe to do so; one way to make this precise is the dominated convergence
theorem.

Theorem 4.3.3 (dominated convergence). Let fn ∈ L1(X → B), and suppose that fn → f
almost pointwise. If there is a g ∈ L1(X → [0,∞)) such that for every n and almost every
x ∈ X,

||fn(x)|| ≤ g(x),

then f ∈ L1(X → B) and fn → f in L1(X → B).

Proof. By Lemma 4.1.5, there is a measurable set E with |µ|(E) <∞ such that∫
X\E

g(x) d|µ|(x) < ε.

Thus ∫
X\E
||fn(x)− fm(x)||B ≤ 2

∫
X\E

g(x) d|µ|(x) < 2ε.

Let ν be the indefinite integral of g. By Theorem 4.2.8, there is δ > 0 so small that if
|µ|(G) < δ then |ν|(G) < ε. Since E has finite measure, Egorov’s theorem implies that there
is a measurable set F ⊆ E such that |µ|(E \ F ) < δ and fn → f in L∞(F ). But then
|ν|(E \ F ) < ε, and so∫

E\F
||fn − fm(x)||B ≤ 2

∫
E\F

g(x) d|µ|(x) = 2|ν|(E \ F ) < 2ε.

In particular,
∫
X\F ||fn− fm||B d|µ| < 4ε. Since F has finite measure and fn → f in L∞(F ),

fn → f in L1(F ) and so (fn) is Cauchy in L1; so choose N so large that if n,m ≥ N then

||fn − fm||L1(F ) < ε.

Then

||fn − fm||1 ≤ ||fn − fm||L1(F ) +

∫
X\F
||fn − fm||B d|µ| < 5ε

so (fn) is Cauchy in L1. Since fn → f almost pointwise, it follows that fn → f in L1.

Example 4.3.4. We will compute

lim
n→∞

∫ n

0

(
1 +

x

n

)n
e−2x dx.
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First we compute

lim
n→∞

(
1 +

x

n

)n
e−2x = exe−2x = e−x.

Now, we have a pesky changing bound of integration, so we write

lim
n→∞

∫ n

0

(
1 +

x

n

)n
e−2x dx = lim

n→∞

∫ ∞
0

1[0,n](x)
(

1 +
x

n

)n
e−2x dx.

Since the integrand converges to e−x, after finitely many n (which are are allowed to discard,
since we only care about the limiting behavior), we get

1[0,n](x)
(

1 +
x

n

)n
e−2x ≤ 2e−x.

On the other hand, ∫ ∞
0

e−x dx = 1,

so x 7→ 2e−x is in L1 and by dominated convergence,

lim
n→∞

∫ n

0

(
1 +

x

n

)n
e−2x dx =

∫ ∞
0

lim
n→∞

1[0,n](x)
(

1 +
x

n

)n
e−2x dx =

∫ ∞
0

e−x dx = 1

as desired. These sorts of problems are very common on preliminary exams for graduate
students, so the reader should probably master them.

4.3.5. The other situation in which it is acceptable to interchange an integral with a limit
is when we can strongly use the order structure of R in teh codomain. So, we will need
to restrict to the case when B = [0,∞) for the rest of the section, and thus formulate the
so-called monotone convergence theorem.

TODO: Monotone convergence

Corollary 4.3.6. Let fn ≥ 0 be nonnegative integrable functions and µ a nonnegative
measure on X. Then ∫

X

∑
n

fn dµ =
∑
n

∫
X

fn dµ.

Proof. The sequence of partial sums is increasing, so we can apply monotone convergence.

Corollary 4.3.7. Let f ≥ 0 be a nonnegative measurable function and µ a nonnegative
measure. Then ∫

X

f dµ = sup
s

∫
X

s dµ

where the supremum is taken over all nonnegative s ∈ ISF(X → [0,∞)).
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Proof. We first show that there is a sequence of simple functions ≤ f converging to f
monotonically. Fix n, and let An = {0, 1/n, 2/n, . . . , n− 2/n, n− 1/n, n}. For each y ∈ An,
let En

y = f−1([y, y + 1/n)). Let

fn =
∑
y∈An

y1Eny .

Now let sn = maxm≤n fm. Then sn is simple and and sn ≤ sn+1, and sn → f almost
everywhere. So

lim
n→∞

∫
X

sn dµ =

∫
X

f dµ

by monotone convergence. Therefore∫
X

f dµ ≤ sup
s

∫
X

s dµ.

Monotonicity of the integral implies the other direction.

Exercise 4.3.8. Let f be a measurable B-valued function. Show that if there g ∈ L1(X →
[0,∞)) with ||f ||B ≤ g almost everywhere, then f ∈ L1.

Exercise 4.3.9. Suppose that |µ|(X) < ∞ (for example, µ is a probability measure). Let
(fn) be a sequence of functions in L∞ such that there is C > 0 such that for every n,
||fn||L∞ ≤ C. Show that if fn → f almost pointwise, then fn → f in L1.

Exercise 4.3.10. Consider the gamma function

Γ(z) =

∫ ∞
0

xz−1e−x dx.

Show that Γ is well-defined when z > 0 and is infinitely differentiable there. Then show that
Γ(n+ 1) = n! =

∏
1≤k≤n k if n ∈ N.

Exercise 4.3.11. Show that

lim
n→∞

∫ 1

0

n3/2x

1 + n2x2
dx = 0.

4.4 Product measures

Previous our development of the Lebesgue measure has been totally one-dimensional: we
have defined the measure of a measurable subset of the line R. We would like to do the same
for higher-dimensional spaces.

We first review the notion of a product set. Suppose that we are given sets Xα, where
α ranges over a set A. The Cartesian product

∏
α∈AXα is by definition the set of maps

x : A →
⋃
α∈AXα such that for every a ∈ A, x(α) ∈ Xα. We usually write xα or πα(x) to

mean xα. The maps

πβ :
∏
α∈A

Xα → Xβ
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are known as canonical projections and the sets Xα are known as factors .
We mainly will be interested in the case when A = {1, . . . , n} is a finite set, in which case

we write X1 × · · ·Xn to mean the product of sets Xi, i ∈ A. An element of X1 × · · · ×Xn

can be written as an n-tuple (x1, . . . , xn), where xi ∈ Xi. For example, Rn is a product of n
copies of R, and its elements are n-tuples of real numbers.

Lemma 4.4.1. Suppose that Xα are nonempty sets. Then
∏

αXα is nonempty.

Proof. We first note that we can assume that the Xα are disjoint. Indeed, if they are not,
we can replace them with

X ′α = Xα × {α}.
Then elements of X ′α are pairs (x, α) where x ∈ Xα. There is an obvious bijection Xα → X ′α,
x 7→ (x, α), so we identify the two sets Xα and X ′α. Henceforth we replace Xα with Xα and
hence assume the Xα are disjoint.

Define a map f :
⋃
α∈AXα → A by declaring that if x ∈ Xα then f(x) = α. Since the Xα

are all nonempty, f is surjective. By the axiom of choice, Axiom B.1.47, there is an injective
map g : A→

⋃
α∈AXα such that f ◦ g is the identity, and so g(α) ∈ Xα. Define an element

x of Xα by letting xα = g(α).

If A is finite — the case that is the most interesting to us — then the use of the axiom
of choice in the above argument is unnecessary (but otherwise it cannot be avoided, because
if every product of nonempty sets is nonempty, then the axiom of choice is necessarily true).
The use of the axiom of choice in the above argument is a hint that infinite products may
be rather ill-behaved in measure theory.

Having discussed Cartesian products of sets, we now move on to products of measurable
spaces.

Definition 4.4.2. Let (Xα,Σα) be measurable spaces. A measurable rectangle in
∏

αXα is
a Cartesian product

∏
α Yα, where Yα ∈ Σα and all but finitely many of the Yα are equal to

Xα. The set of measurable rectangles is denoted
⊕

α Σα.

The measurable rectangles do not form a σ-algebra in general. For example, in R2, the
diagonal {(x, x) : x ∈ R} is not a rectangle, but will be in the σ-algebra generated by the
rectangles, as we will later show.

The rather awkward requirement that finitely many of the Yα are equal to the Xα can
be explained by the following lemma.

Lemma 4.4.3. Let (Xα,Σα) be measurable spaces. Then
⊕

m Σm is a semiring in
∏

mXm.

Proof. Let E,F be measurable rectangles. Since all but finitely many of the Eα are Xα,
we can rename those α such that Eα 6= Xα to be natural numbers. That is, the only Eα
which are not Xα will be called E1, . . . , Em. Then if any unrenamed α has Fα 6= Xα, we can
rename those α to m+ 1, . . . , n. Thus, we can assume that

A = {1, . . . , n} ∪B

where for every β ∈ B, Eβ = Fβ = Xβ. One can then ignore the Eβ and Fβ entirely, and
so assume that B = ∅. Then, arguing by induction, one can assume that n = 2. So assume
that E = E1 × E2 and F = F1 × F2.
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Now products commute with intersections, so E∩F is also a product of measurable sets,
hence a measurable rectangle. One similarly checks that

(E1 × E2) \ (F1 × F2) = (E1 × (E2 \ F2)) ∪ (E1 \ F1)× (E2 ∩ F2).

The above union is disjoint.

Therefore it is reasonable to want to define a premeasure on
⊕

mEm, which we do shortly.

Definition 4.4.4. Let (Xα,Σα) be measurable spaces, and let X =
∏

αXα. The product
σ-algebra

⊗
α Σα is the σ-algebra on X generated by measurable rectangles in X. We call

(X,
⊗

α Σα) the product measurable space of the (Xα,Σα).

Let (
∏

αXα,
⊗

α Σα) be a product measurable space. We will usually just denote this
space by

∏
αXα, leaving

⊗
α Σα understood, since usually

⊗
α Σα is the only interesting

σ-algebra on
∏

αXα.
We leave it to the categorically-minded reader to check that the product measurable

space satisfies the universal property of products, and leave everyone else to quizzically
wonder what such a sentence means. This is another sign that our definition of measurable
space, with its bizarre clause that all but finitely many of the factors are trivial, is “correct”.

We recall that a measure µ is complex-valued if for every measurable E, µ(E) is a
complex number or ∞. We will restrict to complex-valued measures because we need to be
able to multiply the measures of sets. Actually, if µ is complex-valued, then we can define
its complex conjugate µ by µ(E) = µ(E). Then we can define the real part Reµ = (µ+µ)/2
and imaginary part Imµ = (µ − µ)/2i. Then µ = Reµ + i Imµ. Thus whenever we work
with complex-valued measures, we can replace them with real-valued measures whenever
necessary. For a real-valued measure, we define µ+ = (µ+µ)/2 and µ− = (µ−µ)/2, thus µ±
are nonnegative measures and µ+ − µ− = µ. So, when working with products of measured
spaces, we will state theorems that are for complex-valued measures, but then prove them
for nonnegative measures, since every complex-valued measure can be written as a sum of
nonnegative measures.

Definition 4.4.5. Let (X1,Σ1, µ1), . . . , (Xn,Σm, µn) be measured spaces, where all the µm
are complex-valued measures. We define a function

⊕
m µm = µ1 ⊕ · · · ⊕ µn on

⊕
m Σm by(⊕

m

µm

)
(E) = µ1(E1)µ2(E2) · · ·µn(En).

We take the convention 0×∞ = 0 whenever necessary.

We note that if we have an infinite collection of measured spaces (Xα,Σα, µα), α ∈ A it is
reasonable to define

⊕
α µα whenever we can guarantee that the infinite product

∏
α µα(Eα)

converges. For example this happens if, for every α, µα is a probability measure. However,
this case can be rather tricky, due to the technicalities in the definition of a product of
infinitely many measurable spaces. We discuss this in more detail in Example 4.4.10.

Lemma 4.4.6. Let (X1,Σ1, µ1), . . . , (Xn,Σm, µn) be measured spaces, where all the µm are
complex-valued measures. Then

⊕
m µm is a premeasure on

⊕
m Σm.
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Proof. We must show that
⊕

m µm is σ-additive, and it suffices to check when n = 2, by
induction. By the usual reduction we can assume that the µm are nonnegative. In that case
we change notation and write η = µ⊕ ν, where (X,µ) and (Y, ν) are measured spaces.

Suppose that E × F is a rectangle which is a disjoint union of rectangles En× Fn. Then

1E(x)1F (y) = 1E×F (x, y) =
∞∑
n=1

1En×Fn(x, y) =
∞∑
n=1

1En(x)1Fn(y).

Therefore for any x,

1E(x)ν(F ) = 1E(x)

∫
Y

1F (y) dν(y) =

∫
Y

∞∑
n=1

1En(x)1Fn(y) dν(y).

Thus by Corollary 4.3.6,

1E(x)ν(F ) =
∞∑
n=1

1En(x)

∫
Y

1Fn(y) dν(y) =
∞∑
n=1

1En(x)ν(Fn).

Applying Corollary 4.3.6 again we see that

η(E × F ) = µ(E)ν(F ) =
∞∑
n=1

µ(En)ν(Fn) =
∞∑
n=1

η(En × Fn).

This is what we needed to prove.

Corollary 4.4.7. Let (X1,Σ1, µ1), . . . , (Xn,Σm, µn) be measured spaces, where all the µm
are complex-valued measures. Then

⊕
m µm extends to a measure on

⊗
m Σm, which is

unique and σ-finite if the µm are all σ-finite.

Proof. Existence is obvious by Lemma 4.4.6 and the Carathéodory construction. As for
uniqueness, we use σ-finiteness of µm to find measurable sets Ek

m ⊆ Xm such that Ek
m ⊆

Ek+1
m ,

⋃
k E

k
m = Xm, and µm(Ek

m) < ∞. Then
∏

mE
k
m ⊆

∏
mE

k+1
m ,

⊕
m µm(

∏
mE

k
m) =∏

m µm(Ek
m) <∞, and

⋃
k

∏
mE

k
m =

∏
mXm. This implies that the extension of

⊕
m µm to

a measure on
⊗

m Σm is σ-finite and therefore unique.

Definition 4.4.8. Let (X1,Σ1, µ1), . . . , (Xn,Σm, µn) be measured spaces, where all the µm
are complex-valued measures. Let

⊗
m µm = µ1 ⊗ · · ·µn be the extension of the premeasure⊕

m µm to
⊗

m Σm. We call
⊗

m µm the product measure of the µm and (
∏

mXm,
⊗

m Σm,
⊗

m µm)
the product measured space.

Let us give some examples of product measures. We first consider the simplest example,
which any reader who has played a children’s card game is familiar with.

Example 4.4.9. Let A = {1, . . . , n}, equipped with the σ-algebra consisting of every subset
of A, and consider a function β : A → [0, 1] such that

∑n
m=1 β(m) = 1. Then β defines a

probability measure µ by

µ({a1, . . . , ak}) =
k∑
j=1

β(aj).
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For example if β = 1/n, then µ is the uniform probability measure which sends every set E
to its cardinality divided by n. If one has a set of n cards, and the probability of drawing
card m is β(m), then µ(E) is the probability of drawing a card in the set E.

Now we consider the Cartesian power A` = A × · · · × A (` factors). Elements of A`

are vectors of ` elements of A, and if µ` =
⊗

` µ is the product measure on A`, then
µ`(E1 × E2 × · · · × E`) can be interpreted as the probability of first drawing a card in
E1 ⊆ A, then in E2 ⊆ A, and so on, and then in E` ⊆ A, with replacement. In particular,
if E` = E × · · · × E is the Cartesian power of a set E ⊆ A, then µ`(E`) = µ(E)` is the
probability of drawing a card in E ` times in a row, with replacement.

Example 4.4.10. Let A, β be as in Example 4.4.9. Now let us consider an infinitely long
game, where one draws an infinite sequence of cards (the logicians would say that the player
draws ω cards, because of TODO:Appendix) with replacement. Let Aω be the set of se-
quences with values in A, viewed as a measurable space by endowing it with the σ-algebra
generated by the measurable rectangles. By a cardinality argument similar to the one given
in Lemma 1.1.17, one can show that not every subset of Aω is measurable. On the other
hand, the reader who is familiar with Cantor spaces (TODO:Appendix), and with the no-
tion of the product of topological spaces (TODO:Appendix), will check that if we endow
each copy of A with the discrete topology (which is its unique Hausdorff topology) and then
endow Aω with the product topology, Aω is Cantor, and every Borel set is measurable (and
conversely, that every measurable set is Borel).

Since µ is probability, an infinite product of numbers µ(En) will converge. Therefore if
E is a rectangle in Aω, and πn is the canonical projection onto the nth factor,

µω(E) =
∏
n

µ(πn(E))

is well-defined, and the reader can check (using the fact that for all n large enough, µ(πn(E))
must be either 0 or 1 — why?) that µω is a premeasure on the measurable rectangles, and
hence a Borel probability measure. In the case that n = 2 and µ is uniform (so β = 1/2), then
we say that µω is the standard Cantor measure. It is of essential importance in probability
theory and logic, among other fields.

Example 4.4.10 motivates the idea that the product of Borel σ-algebras should be the
Borel σ-algebra of the product spaces. Unfortunately, this is not true in general. We include
the following example for the reader’s amusement, but it is not terribly important and can
be omitted.

Example 4.4.11. Let κ be an uncountable cardinal as in TODO:Appendix, let A = {1, 2}
with its discrete topology, and let X = Aκ be the Cartesian power, consisting of one factor
of A for each ordinal of cardinality less than κ. Let πα be projection onto the αth factor.
Let ∆ be the diagonal, so x ∈ ∆ iff there is a y ∈ A for every α < κ, πα(x) = y.

Since X is a product of discrete (hence Hausdorff) spaces, X is Hausdorff, so ∆ is closed
TODO:Appendix and hence Borel. On the other hand, if ∆ was measurable, then (as
the set-theoretically minded reader can check) for all but countably many α, πα(∆) = A,
contradicting the fact that there are uncountably many α and πα(∆) = {y}.
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The above example is highly pathological. The below lemma covers most interesting
cases. We remind the reader that if Xm are metric spaces with metrics dm then

∏
mXm can

be given the metric
d(x, y) = max

m
dm(πm(x), πm(y)). (4.1)

Lemma 4.4.12. Let X1, . . . , Xn be separable metric spaces. Then the Borel σ-algebra on∏
mXm is the product of the Borel σ-algebras on Xm.

Proof. By induction we can assume n = 2, and then change notation to write X = X1,
Y = X2. We let B(Z) denote the Borel σ-algebra of the metric space Z.

By a Borel cylinder in X × Y we mean a set of the form π−1
X (E) or π−1

Y (F ) where E is
Borel in X and F is Borel in Y . We mean similarly for a Borel cylinder . We leave it to the
reader to check that B(X)⊗ B(Y ) is generated by the Borel cylinders. Clearly every Borel
cylinder is Borel, so this implies that every element of B(X)⊗B(Y ) is Borel. TODO: Draw
a picture of a cylinder.

Conversely, since X, Y are separable there are countable dense subsets E,F ⊆ X, Y .
Then E × F is countable and dense in X × Y . Let B(x, y, r) denote the ball of radius r
centered at (x, y); then B(x, y, r) = BX(x, r)×BY (y, r) if we are using the metric 4.1. Here
BX(x, r) is a ball in X and similarly for BY . Let S be the set of B(x, y, r) with (x, y) ∈ E×F
and r ∈ Q; then any open set in X × Y is a countable union of sets in S and so S generates
B(X × Y ). Therefore B(X × Y ) ⊆ B(X)⊗ B(Y ).

In the following section we use Lemma 4.4.12 to define the Lebesgue integral in general.

4.5 The Lebesgue integral

Let µ be a Stieltjes measure. Then µ is a Borel measure on R, and by Lemma 4.4.12, a
product of d copies of µ gives rise to a Borel measure on Rd. We will mainly be interested
in the case when µ is the Lebesgue measure.

Definition 4.5.1. Let µ be the Lebesgue measure on R. The Borel measure µd =
⊗d

i=1 µ
on Rd is called the Lebesgue measure on Rd. If f ∈ L1(Rd, µd), we say that f is Lebesgue
integrable and call

∫
f dµd the Lebesgue integral of f .

If d = 2 then the Lebesgue measure of a rectangle, or indeed any of the classical shapes,
is just its area. Similarly if d = 3 then the Lebesgue measure of a rectangular prism, or
any other classical shape, is just its volume. Thus Lebesgue measure generalizes the basic
notions of Euclidean geometry to arbitrary (Borel) subsets of Rd.

In general Lebesgue measure is so important that we usually refer to it implicitly. For
example, we will usually just write

∫
f or

∫
f(x) dx for the Lebesgue integral of f .

In this section we record the basic properties of the Lebesgue measure.

Theorem 4.5.2. The Lebesgue measure is a σ-finite Radon measure.

Proof. By induction on d. When d = 1 this is the content of Theorem 1.5.12. Now µd =
µd−1 ⊗ µ, and we know that both µd−1 and µ are Radon.
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First we check local finiteness. By the Heine-Borel theorem every compact set is bounded
and hence is contained in a compact rectangle in Rd, which is a product of a compact rectangle
in Rd−1 and a compact interval, both of which have finite measure. TODO:Draw a picture.
This makes σ-finiteness easy to prove, because [−n, n]d is a compact (hence finite measure)
rectangle that grows to be all of Rd.

Now we check inner regularity on open rectangles. An open rectangle U in Rd is a
product of an open rectangle U∗ =

∏
i<d πi(U) in Rd−1 and an open interval πd(U). Now if

K is compact in U , then obviously µ(K) ≤ µ(U). Conversely, for every ε > 0, we can find
a compact interval Kd ⊂ πd(U) with µd(πd(U) \Kd) < ε and a compact rectangle K∗ ⊂ U∗

with µd(U∗ \K∗) < ε. So K = K∗ ×Kd also has µd(U \K) arbitrarily small.
Every open set U is a countable union of almost disjoint1 open rectangles Un, which

can be approximated from within by compact sets Km
n ⊂ Un with µ(Un \Km

n ) < ε2−m2−n.
Then the Kn

n are disjoint and Ln =
⋃
m≤nK

m
m is compact. Moreover if µd(U) = ∞ then

µd(Ln)→∞; otherwise

µd(U) =
∑
n

µd(Un) ≤
∑
n

µd(Kn
n) +

1

2n2n
< ε+ µd(Ln) +

∑
m>n

µd(Km
m)

and ∑
m>n

µd(Km
m) ≤

∑
m>n

µd(Um) < ε

if n is large enough, since the sequence of µd(Um) is absolutely summable. Therefore the Ln
approximate U from within.

The proof of outer regularity is similar to the proof of inner regularity, and we leave it
as an exercise. The reader may wish to use “half-open rectangles” in the proof of outer
regularity.

Theorem 4.5.3. If A is Borel in Rd and x ∈ Rd, then the translation A + x has the same
Lebesgue measure as A.

Proof. See Exercise 4.5.6.

Theorem 4.5.4. Let f : [α, β] → R be a bounded Riemann integrable function and let R
be its Riemann integral. Then ∫

αβ
f(x) dx = R.

Proof. The Riemann integral approximates f from below by step functions fn on [α, β]
which converge to f pointwise, and R is the limit of the fn as n→∞. Since f is a bounded
function on a set of finite measure it is in L1, and then dominated convergence implies that
the Lebesgue integral is the limit of the integrals of the fn.

Thus, we really have generalized the familiar notion of integration that many students
learn about in high school or their first year of undergraduate education. We now prove that
the integral of a function is the area under its graph.

1in the sense that their intersection is Lebesgue null
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Theorem 4.5.5. Let f ∈ L1(Rd → [0,∞)). Let U = {(x, y) : x ∈ Rd, 0 ≤ y ≤ f(x)} ⊂
Rd+1. Then

µd+1(U) =

∫
Rd
f(x) dx.

Proof. All functions here are nonnegative (so that we do not have to talk about “net signed
area”), so by monotone convergence and continuity of measure, it suffices to check this for
simple functions, and then by linearity it suffices to check this for an indicator function
f = 1A. But this is obvious:

U = {(x, y) : x ∈ Rd, 0 ≤ y ≤ f(x)}
= {(x, y) : x ∈ A, 0 ≤ y ≤ 1} ∪ {(x, y) : x /∈ A, 0 ≤ y ≤ 0}
= (A× [0, 1]) ∪ (Ac × {0}).

Since µd+1(Ac × {0}) = 0,

µd+1(U) = µd+1(A× [0, 1]) = µd(A)µ1([0, 1]) = µd(A) =

∫
Rd

1A(x) dx.

That proves the claim.

Be aware, however, that there are Riemann integrable functions which are not Lebesgue
integrable. The reason is that, to avoid integrals of the form ∞ −∞, we demanded that
Lebesgue integrals converge absolutely, while the Riemann integral is allowed to converge
conditionally. See Exercise 4.5.9 for an example of this phemonenon.

Exercise 4.5.6. Prove Theorem 4.5.3. (Hint: Use Theorem 1.5.6.)

Exercise 4.5.7. The euclidean group is the group of invertible functions Rd → Rd generated
by translations, rotations around the origin, and reflections. Equivalently, it is the group
generated by translations and orthogonal linear maps. An element of the euclidean group
is called a rigid motion. Show that if A is a rigid motion and µ denotes Lebesgue measure,
then A∗µ = µ. This generalizes Theorem 4.5.3.

Exercise 4.5.8. Let A : Rd → Rd be an invertible linear map, µ Lebesgue measurable, and
E a Lebesgue measurable set. Show that A∗µ(E) = | detA|µ(E). (Hint: Use Exercise 4.5.7
to show that without loss of generality, we may assume that A is positive. Now use the
spectral theorem.)

Exercise 4.5.9. Define the sampling function sinc : R → R by sincx = sin x/x for x 6= 0
and sinc 0 = 1. Let F (r) be the Riemann integral of sinc on [0, r]. Show that limr→∞ F (r)
exists and is finite. However, show that sinc is not Lebesgue integrable on [0,∞).

4.6 Changing the order of integration

In this section we prove the following extremely useful theorem. We let f(x, ·) denote the
function y 7→ f(x, y) whenever f is a function of two variables; similarly for f(·, y).
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Theorem 4.6.1 (Fubini). Let (X,Σ, µ) and (Y,Γ, ν) be σ-finite complex-valued measured
spaces. Let f : X × Y → C be a nonnegative (Σ ⊗ Γ)-measurable function. Then the
following are equivalent:

1. f ∈ L1(X × Y → C, µ⊗ ν).

2. For almost every x ∈ X, f(x, ·) ∈ L1(Y → C, ν) and the function

x 7→
∫
Y

f(x, y) dν(y)

is in L1(X → C, µ).

3. For almost every y ∈ Y , f(·, y) ∈ L1(X → C, µ) and the function

y 7→
∫
X

f(x, y) dµ(x)

is in L1(Y → C, ν).

Moreover,∫
X×Y

f d(µ⊗ ν) =

∫
X

∫
Y

f(x, y) dµ(x) dν(y) =

∫
Y

∫
X

f(x, y) dν(y) dµ(x). (4.2)

We will weaken the hypotheses on this theorem somewhat before the end of the section.
Because of (4.2) we can define the double integral by∫∫

X×Y
f dµ dν =

∫
X×Y

f d(µ⊗ ν).

One similarly defines triple integrals, quadruple integrals, et cetra, by induction. Indeed, the
hypothesis that only two measure spaces are in play in the statement of Fubini’s theorem can
be completely done away with, by induction, and one can consider arbitrary finite products
of measure spaces. We will also do away with the hypothesis that f is nonnegative, at the
price of requiring that f ∈ L1. This is necessary to protect ourselves from our old enemy,
∞−∞. We cannot do away with the σ-finite hypothesis, however TODO:show this.

TODO: State the Banach space valued version.
Before we prove Fubini’s theorem, let us record three of its many applications.

Corollary 4.6.2. Let (xi,j)
∞
i,j=1 be absolutely summable, thus

∞∑
i=1

∞∑
j=1

|xi,j| <∞,

or nonnegative, thus for every i, j, xi,j ≥ 0. Then

∞∑
i=1

∞∑
j=1

xi,j =
∞∑
j=1

∞∑
i=1

xi,j.
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Proof. This is an immediate consequence of Fubini’s theorem applied to counting measure.

Corollary 4.6.3. One has the Gaussian integral formula∫ ∞
−∞

e−x
2

dx =
√
π.

Proof. We first note that ∫ ∞
−∞

e−x
2

dx =

∫ ∞
−∞

e−y
2

dy

since all we have done is replace a dummy variable. Therefore it suffices to show that∫ ∞
−∞

e−x
2

dx

∫ ∞
−∞

e−y
2

dy = π. (4.3)

Clearly x 7→ e−x
2

is nonnegative, so by Fubini’s theorem we can replace the product integral
by a double integral:∫ ∞

−∞
e−x

2

dx

∫ ∞
−∞

e−y
2

dy =

∫∫
R2

e−(x2+y2) dA(x, y).

Here A (short for area) is Lebesgue measure on R2. Now {0} is a null set so we can discard it,
and the reader who recalls their calculus class will diligently check that R2\{0} ∼= R+×[0, 2π)
according to the map (r cos θ, r sin θ) 7→ (r, θ), where the open half-line R+ is given the Borel
measure µ with

µ(E) =

∫
E

r dr

and [0, 2π) is given Lebesgue measure. That is,

dA(r cos θ, r sin θ) = dµ(r) dθ = r dr dθ.

To check this claim, one just needs to show that the Borel sets in R2 \ {0} are generated by
“rectangles” (which here are sectors {(r cos θ, r sin θ) : r ∈ [r1, r2], θ ∈ [θ1, θ2]}), and that for
every such rectangle R, which we identify with the (plain old) rectangle [r1, r2]× [θ1, θ2], its
area satisfies

A(R) = (θ2 − θ1)

∫ r2

r1

r dr.

TODO:Draw a picture of a sector Once the reader verifies this, they are entitled to apply
Fubini’s theorem again, and∫∫

R2

e−(x2+y2) dA(x, y) =

∫ 2π

0

∫ ∞
0

re−r
2

dr dθ = 2π

∫ ∞
0

re−r
2

dr.

Now this is really just a calculus problem: if s = r2 then ds = 2r dr, and so one easily checks
that ∫ ∞

0

re−r
2

dr =
1

2
.

Then (4.3) immediately follows.
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Corollary 4.6.4. Let X, Y be independent random variables of type R. If X, Y are in L1,
then E(XY ) = (EX)(EY ), and if X2, Y 2 ∈ L1, then Var(X + Y ) = VarX + VarY .

Proof. Let µX , µY be the distributions of X, Y . Let A = A1×A2 ⊆ R2 be a Borel rectangle.
Then

µX ⊗ µY (A) = µX(A1)µY (A2) = P (X ∈ A1)P (Y ∈ A2) = P (X ∈ A1 ∩ Y ∈ A2)

by independence. On the other hand, the random variable (X, Y ) of type R2 has distribution

ν(A) = P (X ∈ A1 ∩ Y ∈ A2)

so ν = µX ⊗ µY . It follows that

E(|X||Y |) =

∫
R2

n∏
j=1

|x||y| dν(x, y) =

∫∫
R2

|x||y| dµX(x) dµY (y)

by Exercise 3.7.19 and Fubini’s theorem. This integral simplifies to∫∫
R2

|x||y| dµX(x) dµY (y) =

∫ ∞
−∞
|x| dµX(x)

∫ ∞
−∞
|y| dµY (y) = (E|X|)(E|Y |)

by Exercise 3.7.19. So by Fubini’s theorem we can repeat the above argument with absolute
values dropped and conclude E(XY ) = (EX)(EY ).

Now set X ′ = X−EX, Y ′ = Y −EY . Then X ′, Y ′ are independent and EX ′ = EY ′ = 0,
so E(X ′Y ′) = 0. Thus

Var(X + Y ) = E((X ′ + Y ′)
2
) = E((X ′)

2
) + E((Y ′)

2
) + 2E(X ′Y ′)

= VarX ′ + VarY ′ = VarX + VarY

as desired.

Monotone Classes
TODO: Prove Fubini

Exercise 4.6.5 (Cavalieri’s principle). Let E ⊆ R2 be a measurable set, µd Lebesgue on
Rd, and Ex = {y ∈ R : (x, y) ∈ E}. Show that

µ2(E) =

∫ ∞
−∞

µ1(Ex) dx

(so that, in particular, x 7→ µ1(Ex) exists almost everywhere and is measurable).

Exercise 4.6.6. Let f be the function f(x, y) = y−2 for x < y and f(x, y) = x−2 for
y < x. Show that f is defined almost everywhere and measurable, and the iterated integrals∫ 1

0

∫ 1

0
f(x, y) dx dy and

∫ 1

0

∫ 1

0
f(x, y) dy dx are finite, but f /∈ L1([0, 1]2). What went wrong?
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Exercise 4.6.7 (weak law of large numbers). Let Xn be a countable sequence of iid random
variables of type R. Assume that VarXn makes sense and EXn = 0. Show that

lim
n→∞

1

n

n∑
j=1

Xj = 0

in probability using Chebyshev’s inequality, Exercise 3.7.16.

Exercise 4.6.8 (Stone-Weierstrass theorem for polynomials). One form of the Stone-Weierstrass
theorem is the statement that for every continuous function f : [0, 1] → R, there exists a
sequence of polynomials that converge to f in L∞. Surprisingly, this deterministic statement
has a simple probabilistic proof, which we now outline.

Fix x ∈ [0, 1]. Show that there is a probability measure P on the Cantor set Ω which
admits iid random variables Xj with P (Xj = 1) = x and P (Xj = 0) = 1− x.

Let Xn =
∑

j≤nXj/n be the average of the first n random variables Xj and show that

Bn(x) = E(f(Xn)) is a polynomial in x. For every ε > 0 there is a δ > 0, which does not
depend on x, such that |x− y| < δ implies |f(x)− f(y)| < ε. Conclude that

|Bn(x)− f(x)| . ε+ P (|Xn − x| > δ)

where the constant is allowed to depend on f but not x. Use Chebyshev’s inequality, Exer-
cise 3.7.16, to conclude the proof.

Exercise 4.6.9 (Sierpiński – for those who know set theory). Recall that a well-ordering of
R is a bijection R→ κ where κ is a cardinal (Definition B.1.40). According to the axiom of
choice, there is a well-ordering F of R (Theorem B.1.50); let us write x ≺ y if F (x) < F (y).
Let A = {(x, y) ∈ R2 : y ≺ x}, and let Sx = {y ∈ R : y ≺ x}.

Show that there exists x ∈ R such that Sx is not null; let x∗ be the ≺-least such x. Show
that A ∩ (Sx∗ × Sx∗) is nonmeasurable; conclude that A is nonmeasurable.
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Chapter 5

Differentiation and regularity

5.1 Differentiation of measures

As an application, we define the conditional expectation of a random variable. Recall from
elementary probability theory that if A is an event (which is not almost surely false) and X
is a random variable, then the conditional expectation of X given A is

E(X|A) =
E(1AX)

P (A)
, (5.1)

the expected value of X if we rescale A to be the entire probability space. However, in
probability theory, one often needs to discuss the conditional expectation of X with respect
to not just an event, but an entire σ-algebra of events. More precisely, let F be a σ-algebra.
If A ∈ F and we define E(X|A) by (5.1), then we forget everything X except its mean on A.
The conditional expectation of X on F , by definition, will be a random variable that only
remembers the conditional expectations of X with respect to every event in F .

Definition 5.1.1. Let (Ω,Σ, P ) be a probability space, F ⊆ Σ a σ-algebra, and X ∈
L1(Ω → R) a random variable. The conditional expectation of X given F is a measurable
function

E(X|F) : (Ω,F)→ R

such that

E(1AE(X|F)) = E(1AX)

whenever A ∈ F .

Example 5.1.2. A measurable partition of Ω is a set of mutually exclusive events Ai such
that

⋃
iAi = Ω. If (Ai) is a measurable partition and F is the smallest σ-algebra containing

every Ai, then E(X|F) is constant on each Ai, namely

E(X|F)|Ai = E(1AiX)

is the mean of X on Ai.

99
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Corollary 5.1.3. Let (Ω,Σ, P ) be a probability space, F ⊆ Σ a σ-algebra, and X ∈ L1(Ω→
R) a random variable. The conditional expectation E(X|F) is well-defined in the sense that
it exists, and if Y is also a conditional expectation, then E(X|F) = Y almost surely.

Proof. Let µ be the measure

µ(A) = E(1AX)

defined for A ∈ F . Then µ is absolutely continuous with respect to P , so it has a Radon-
Nikodym derivative; we set

E(X|F) =
dµ

dP
.

Then

E(1AE(X|F)) =

∫
A

dµ

dP
dP =

∫
A

dµ = µ(A) = E(1AX)

as desired.
For the uniqueness, assume Y is also a conditional expectation and let A be the event

that Y 6= E(X|F). Then A ∈ F so

E(1A|Y − E(X|F)|) = E(1A|X −X|) = 0.

But |Y − E(X|F)| > 0 on A so this implies E(1A) = 0, thus A is almost surely false.

Exercise 5.1.4. Let X ∈ L1 be a random variable and F a σ-algebra. Show that if the
pullback σ-algebra induced by X is independent of F then

E(X|F) = E(X).

Show that

E(E(X|F)) = E(X).

Show that if X is F -measurable then E(X|F) = X.

Exercise 5.1.5. Verify that the monotone and dominated convergence theorems, and Fatou
lemma, are valid when EXn is replaced with E(Xn|F), F a σ-algebra.

5.2 Existence of Radon measures

5.3 Differentation of vector-valued functions

5.4 Vitali covers and maximal inequalities

We want to prove the Lebesgue differentiation theorem – Lebesgue’s generalization of the
fundamental theorem of calculus to functions that are just in L1

loc. Before we do so, we
will need some combinatorial facts about open balls in metric spaces, and a certain kind of
inequality called a maximal inequality. Both turn out to be of independent interest.
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5.4.1. Let us recall some terminology about metric spaces. In a metric space X = (X, d),
a ball B is any set of the form B(x, r) = {y ∈ X : d(x, y) < r}, where x ∈ X and r > 0.
If B is a ball, say B = B(x, r), we let kB denote the dilated ball kB = B(x, kr), and put
radB = r.

5.4.2. Our first task is to solve Vitali’s covering problem: given a set B of balls, we will find
a smaller subset which is disjoint but, after dilation by a factor of 3 + ε, covers as much of
the metric space as B did. To do this, we first treat the case that B is a finite set. After
treating the case of finite sets, we use Zorn’s lemma to generalize to the case of infinite sets.

5.4.3. The finite case of Vitali’s covering problem, Theorem 5.4.4, is solved by a greedy
algorithm: we want our to cover as much of the metric space as possible, so at every step
of the construction, we pick the ball which covers as much of the metric space as possible.
See Figure ??. Greedy algorithms are frequently useful in applications, especially software
design. This is why we prove the finite case separately – the reader who is not interested in
greedy algorithms can skip Theorem 5.4.4 and only treat the infinite case.

Theorem 5.4.4 (solving Vitali’s covering problem, finite case). Let X be a metric space
and let B be a finite set of balls in X. Then there is a subset B0 of B consisting of disjoint
balls such that ⋃

B∈B

B ⊆
⋃

B0∈B0

3B0.

Proof. We proceed by induction. If B is empty then there is nothing to prove. Otherwise,
suppose that we are given disjoint balls B1, . . . , Bn. If there are balls in B which are disjoint
from

⋃
j≤nBj, let Bn+1 be one such ball with the largest possible radius. If no such ball

exists, let B0 = {B1, . . . , Bn}.
Now let Y =

⋃
B0∈B0 3B0 and let B ∈ B. It remains to show B ⊆ Y . If B = Bj for

some j ∈ {1, . . . , n} this is clear. Otherwise, there exists j ∈ {1, . . . , n} such that B ∩ Bj

is nonempty and radB ≤ radBj – if not, we would have chosen B at some stage of the
construction of B0. If x ∈ B, y ∈ B ∩ Bj, and z is the center of Bj, then d(y, z) ≤ radBj

and d(x, y) ≤ 2 radB ≤ 2 radBj, as in Figure ??. So

d(x, z) ≤ d(x, y) + d(y, z) ≤ 3 radBj

whence x ∈ Bj ⊆ Y .

Lemma 5.4.5. Let X be a set, and let D be a set of subsets of X. Then there exists a
disjoint subset C of D which is maximal in the sense that if C ′ contains C, then there are
C,C ′ ∈ C ′ with C ∩ C ′ 6= ∅. Furthermore, if D ∈ D then there is C ∈ C such that D ∩ C is
nonempty.

Proof. We proceed by Zorn’s lemma. Let P be the set of all disjoint subsets of D; since
∅ ∈ P, P 6= ∅. Let K be a chain in P. Then if K,K ′ ∈

⋃
K, there is already a K ∈ K such

that K,K ′ ∈ K ∈ P. So K,K ′ are disjoint, and
⋃
K ∈ P.

If there is D ∈ D which misses every set in C, we could add D to C without breaking
disjointness. But this contradicts the fact that Zorn’s lemma always returns a maximal
set.
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Figure 5.1: The state of the greedy algorithm after the zeroth, first, third, and final (sixth)
stages. The blue balls have not yet been added to B0, the green ball has just been chosen
to be added to B0, and the red balls are already in B0. At each stage the algorithm chooses
the largest ball that does not intersect any red balls to add to B0. After the final phase, this
is impossible, and the 3-dilates of the red balls cover every blue ball.
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Figure 5.2: The ball B in red meets the small ball B0 in green, and hence is contained in
its dilate, the large ball in green. Here radB0 = 1.1 while radB = 1, so the red point is
nearly 2 units away from the blue point, and 3.1 < 3.3 units away from the green point.

Theorem 5.4.6 (solving Vitali’s covering problem, infinite case). Let X be a metric space
and let B be a set of balls in X. Let

R(B) = sup
B∈B

radB

be the supremum of radii of the balls in B. If R(B) < ∞ then for every sufficiently small
ε > 0 there is a subset B0(ε) of B consisting of disjoint balls such that⋃

B∈B

B ⊆
⋃

B0∈B0(ε)

(3 + ε)B0. (5.2)

Proof. If ε is small then there exists 1 < δ < 2 so small that 1 + 2δ < 3 + ε. Write

B =
⋃
n≥1

Bn

where Bn consists of balls whose radius is in (δ−n−1R(B), δ−nR(B)]. Let C0 be a maximal
disjoint subset of B0. Suppose that we are given C0, . . . , Cn−1. Let Dn be the set of all
B ∈ Bn which are disjoint from every ball in Cj for every j < n, and let Cn be a maximal
disjoint subset of Cn. Once this process is complete, let B0(ε) =

⋃
n≥1 Cn.

We now must show (5.2). So let B ∈ B, in which case we can find n such that B ∈ Bn.
We claim that there is a ball C ∈ Cj for some j ≤ n such that B ∩ C is nonempty. If

n > 0 and B /∈ Dn, then there is a ball in Cj for some j < n which meets B. Otherwise,
B ∈ Dn or n = 0, so B meets a ball in the maximal disjoint set Cn. This proves the claim.
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In particular,
radC > δ−n−1R(B).

But radB ≤ δ−nR(B), so radB < δ radC. Now if x ∈ B, y ∈ B ∩ C, and z is the center of
C, we have

d(x, z) ≤ d(x, y) + d(y, z) ≤ 2δ radC + radC < (3 + ε) radC

which proves (5.2).

5.4.7. Now we turn to the most important application of Vitali coverings: the Hardy-
Littlewood maximal inequality. This inequality controls the Lebesgue measure of the set on
which a function f ∈ L1(Rd) is allowed to be “large on average”. The point of this inequality
is that it will allow us to prove almost-everywhere convergence of certain sequences that
already converge in L1, but at a price: we will have no control on the rate at which the
sequence converges, and in general it will converge arbitrarily slowly.

Definition 5.4.8. Let V be a Banach space. The Hardy-Littlewood maximal function of a
function f ∈ L1

loc(Rd, V ) is

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

||f(y)||V dy

where | · | is Lebesgue measure.

Theorem 5.4.9 (weaktype Hardy-Littlewood maximal inequality). Let d ≥ 1, V a Banach
space, and f ∈ L1(Rd). Let | · | denote Lebesgue measure. Then for every λ > 0,

µ({Mf > λ}) ≤ 3d
||f ||L1(Rd→V )

λ
.

Proof. Let ε > 0. If Mf(x) > λ then there is a ball B centered at x such that∫
B

||f(y)||V dy > λ|B|.

Let B(ε) be the set of all such balls of radius ≤ 1/ε. By Vitali’s theorem we can find a
countable set of disjoint balls B0(ε) ⊆ B(ε) such that

⋃
B0∈B0(ε)(3 + ε)B0 covers {Mf > λ}.

That is, ∑
B0∈B0(ε)

|(3 + ε)B0| = (3 + ε)d
∑

B0∈B0(ε)

|B0| ≤
(3 + ε)d

λ

∑
B0∈B0(ε)

||f(y)||V dy.

We now use the fact that ∑
B0∈B0(ε)

||f(y)||V dy ≤ ||f ||L1

since B0(ε) is disjoint. We also have

|{Mf > λ}| ≤ sup
ε>0

∑
B0∈B0(ε)

|(3 + ε)B0|
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since if Mf(x) > λ then the ball B centered at x such that∫
B

||f(y)||V dy > λ|B|

satisfies radB ≤ 1/ε for some ε. Summing up we have

|{Mf > λ}| ≤ (3 + ε)d
||f ||L1(Rd)

λ

for every ε > 0 and hence also for ε = 0.

Exercise 5.4.10. Show that the constants in Vitali’s theorem are optimal – we cannot
replace 3 by 3− δ for any δ in the finite case, nor can we replace 3 + ε with 3 in the infinite
case.

Exercise 5.4.11. Show that in a separable metric space, the set B0 of balls returned by
Vitali’s theorem is always countable. But show that there is a metric space and a set of balls
B for which B0 is uncountable.

Exercise 5.4.12. Show that there is a counterexample to Vitali’s theorem when R(B) is
infinite.

Exercise 5.4.13. Implement Vitali’s greedy algorithm in Sage for the case X = Q2, and use
it to solve Vitali’s covering problem with B given by https://clopen-analysis.github.

io/sage/vitali.sage. TODO: Make this dataset! What is the time complexity of Vitali’s
greedy algorithm, and can you optimize it?

Exercise 5.4.14 (Vitali). A fine cover F of a metric space X is an open cover of X such
that for every x ∈ X and ball B 3 x, there is F ∈ F such that x ∈ F ⊆ B. Show that for
every bounded Lebesgue measurable subset X of Rd, fine cover F of X by balls, and ε > 0,
there is a countable disjoint subset F0 which covers almost all of X and∣∣∣∣∣ ⋃

F0∈F0

F0

∣∣∣∣∣ ≤ |X|+ ε.

Exercise 5.4.15. Let f ∈ L1(Rd). Show that if Mf ∈ L1(Rd) then f = 0. It may help to
first try this when f has compact support.

5.5 The Lebesgue differentation theorem

We are ready to prove Lebesgue’s vast generalization of the fundamental theorem of calculus.

Definition 5.5.1. Let X be a metric space and let x ∈ X. If F is a function defined on
balls, we write

lim
B→x

F (B) = L

https://clopen-analysis.github.io/sage/vitali.sage
https://clopen-analysis.github.io/sage/vitali.sage


106 CHAPTER 5. DIFFERENTIATION AND REGULARITY

to mean that for every ε > 0, there is a ball B 3 x such that for every ball x ∈ B′ ⊆ B,
|F (B)− L| < ε. We define

lim sup
B→x

F (B) = L

if L is the supremum over all sequences of balls Bj 3 x with radBj → 0 of the quantity
F (Bj), and similarly define the limit inferior.

5.5.2. If F is a function defined on balls, then the limit of F in the above sense exists iff its
limit superior and limit inferior are equal. Furthermore, if the limit exists, it is unique. The
proofs are the same as for any other definition of limit, and thus omitted.

5.5.3. The reader who is familiar with convergence of nets (Definition B.3.20) will recognize
that the above limit definition is no more than convergence of nets, where the set of open
balls containing x is given the structure of a directed set by writing B′ ≥ B to mean B ⊆ B′.
Indeed, sup(B1, . . . , Bn) = B1 ∩B2 ∩ · · ·Bn, so the set of open balls containing x is directed.

5.5.4. Now recall the notion of an indefinite integral. If f ∈ L1(X → C) we define the
measure

ν(E) =

∫
E

f dµ

to be the indefinite integral of f . If X = R, µ is Lebesgue measure, and Ex = (−∞, x] then
we have

ν(Ex) =

∫ x

−∞
f(y) dy

so that the indefinite integral generalizes the familiar notion from calculus. Indeed, if f is
continuous, then the fundamental theorem of calculus says that

d

dx
ν(Ex) = f(x).

Expanding out the definition of the derivative, we conclude that the fundamental theorem
of calculus is equivalent to the statement

lim
h→0

1

h

∫ x+h

x

f(y) dy = f(x)

which can be written more abstractly as

lim
B→x

1

|B|

∫
B

f(y) dy = f(x) (5.3)

where |B| is the volume of B.

Definition 5.5.5. Let f ∈ L1
loc(Rd). We say that x is a Lebesgue point of f if (5.3) holds.

5.5.6. Thus, the fundamental theorem of calculus says that if f is continuous on R, then
every real number is a Lebesgue point of f . We will need that this is true for functions on
Rd as well.
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Lemma 5.5.7. Every point of Rd is a Lebesgue point of every continuous function on Rd.

Proof. We have already argued that this is true if d = 1, by the fundamental theorem of
calculus.

Let f be a continuous function and ε > 0. We will show that f is continuous at 0; after
translating, the same argument applies anywhere.

We first show the result when B is centered on 0. Let r = radB, and write in polar
coordinates

1

|B|

∫
B

f(y) dy =
1

rd
1

αd−1

∫ r

0

∫
Sd−1

f(s, ω) dω ds

where Sd−1 is the unit sphere in Rd and αd−1 is its surface area (and dω is with respect to
spherical measure). Taking the limit as r → 0, we get

lim
r→0

1

rd
1

αd−1

∫ r

0

∫
Sd−1

f(s, ω) dω ds =
1

αd−1

∫
Sd−1

f(0) dω = f(0)

by this result with d = 1.
Now we prove it for arbitrary balls. We pass to a subsequence (Bj) along which the limit

exists. Each ball in the subsequence contains a ball which is centered on 0, so the definition
of the limit implies that

lim
j→∞

1

|Bj|

∫
Bj

f(y) dy = f(x)

as desired.

Theorem 5.5.8 (Lebesgue differentiation theorem). Let f ∈ L1
loc(Rd → C). Then almost

every x ∈ Rd is a Lebesgue point of x.

Proof. Let

F (B) =
1

|B|

∫
B

f(y) dy.

We want to show that
lim
B→x

F (B) = f(x) (5.4)

almost everywhere.
First we show that (5.4) holds along a subsequence of balls. To do that, we fix a compact

set K ⊂ Rd and prove that (5.4) holds in L1(K). In fact, by Lemma 5.5.7, (5.4) holds
in the topology of L1(K) for a dense subset of L1(K), namely the continuous functions on
K, so it holds for all of L1(K). After taking a subsequence we conclude that (5.4) holds
almost everywhere in K, but K was arbitrary, so (5.4) holds along a subsequence almost
everywhere.

Let δ > 0; we write f = fδ + (f − fδ) where ||fδ||L1 < δ and f − fδ is continuous. Let

g(x) = lim sup
B→x

F (B)− lim inf
B→x

F (B)

and let gδ be the analogous function for fδ, hδ the analogous function for f−fδ. Then hδ = 0
by Lemma 5.5.7, and

|g| ≤ |hδ|+ |gδ| = |gδ| ≤ 2Mgδ.
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By the Hardy-Littlewood maximal inequality, it follows that

|{|g| > ε}| ≤ 6d
δ

ε

where |E| denotes the Lebesgue measure of the measurable set E. If we take δ < ε2 we
conclude that

|{|g| > ε}| < 6dε

or in other words g = 0 almost everywhere. In particular the limit of F (B) as B → x must
exist for almost every x.

But we know that (5.4) holds along a subsequence almost everywhere. So, since the limit
exists almost everywhere along the mother sequence, (5.4) holds almost everywhere along
the mother sequence.

5.5.9. The above argument was essentially standard. We first show convergence of a sequence
(hn) almost everywhere along a subsequence to a quantity h, and then apply the Hardy-
Littlewood maximal inequality to the quantity

lim sup
n→∞

hn − lim inf
n→∞

hn

to deduce that in fact (hn) has a limit, which hence must be h. In general, related inequalities
to the Hardy-Littlewood maximal inequalities, known generally as maximal inequalities, are
powerful tools for proving almost everywhere convergence.

Definition 5.5.10. Let E ⊆ Rd be a Lebesgue measurable set and let | · | denote Lebesgue
measure. The quantity

δE(x) = lim
B→x

|E ∩B|
|B|

is called the density of E at x. The set {0 < δE < 1} is called the measure-theoretic boundary
of E.

Theorem 5.5.11 (Lebesgue density theorem). The measure-theoretic boundary of every
Lebesgue measurable set is null.

Proof. Apply the Lebesgue differentiation theorem to the function 1E where E is Lebesgue
measurable. Since that function is either 0 or 1, its averages over balls must limit to 0 or 1
almost everywhere.

5.5.12. Another important consequence of the Lebesgue differentiation theorem is a test to
determine when functions are differentiable.

Definition 5.5.13. Let X be a metric space and f : X → B a function. The Lipschitz
seminorm of f is

[f ] = sup
x 6=y

|f(x)− f(y)|
d(x, y)

.

A Lipschitz function is a function whose Lipschitz seminorm is finite.
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5.5.14. One can show that every Lipschitz function is continuous. The space of Lipschitz
functions on a compact metric space K is equipped with the supremum norm plus the
Lipschitz seminorm; that is,

||f || = sup
x∈K
|f(x)|+ sup

x 6=y

|f(x)− f(y)|
d(x, y)

.

Theorem 5.5.15 (Rademacher differentation theorem). Every Lipschitz function f : R→ C
is differentiable almost everywhere,

||f ′||L∞ ≤ [f ],

and one has

f(y) = f(x) +

∫ y

x

f ′(z) dz (5.5)

whenever x < y.

Proof. By breaking up f into real and imaginary parts we may assume that f is real-valued.
Since f is continuous, we may let µ be the Stieltjes measure arising from f .

We first claim that µ is absolutely continuous with respect to Lebesgue measure. Indeed,
if E ⊂ R is a Lebesgue null set, then for every ε > 0 there exist half-open intervals ([aj, bj))j
which cover E such that

∑
j bj − aj < ε. But then

||µ||(E) ≤
∑
j

|f(bj)− f(aj)| ≤ [f ]
∑
j

bj − aj < [f ]ε

so E is also µ-null.
So by the Radon-Nikodým theorem there is a function f ′ ∈ L1

loc(R) such that for every
Borel set E,

µ(E) =

∫
E

f ′(x) dx.

In particular, if E = [a, b] we deduce that (5.5) holds.
We must show that f ′ is the honest derivative of f almost everywhere; in fact,

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1

h

∫ x+h

x

f ′(y) dy = lim
B→x

1

|B|

∫
B

f ′(y) dy = f ′(x)

almost everywhere by the Lebesgue differentiation theorem. Since this is the usual definition
of the derivative, we see that the two different possible values of f ′ agree almost everywhere.

Finally we bound for almost every x

|f ′(x)| = lim
h→0

|f(x+ h)− f(x)|
h

≤ [f ].

Thus ||f ′||L∞ ≤ [f ].

TODO: The Devil’s staircase

Exercise 5.5.16 ([Pug13]). Show that the only subsets of R with empty measure-theoretic
boundary are ∅ and R.

Exercise 5.5.17. What is the measure-theoretic boundary of a fat Cantor set?

Exercise 5.5.18. Extend the Rademacher differentiation theorem to Lipschitz functions on
Rd.
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Chapter 6

Hölder duality and Lp norms

Previously we have considered a menagerie of different modes of convergence: pointwise con-
vergence, almost pointwise convergence, uniform convergence, nearly uniform convergence,
convergence in measure, convergence in L1, convergence in L∞ to name a few. In this chapter
we introduce many more.

It is worth asking why we would bother to do this. Our previously considered modes of
convergence served the purpose of allowing us to “approximate”, in various senses, arbitrary
measurable functions by simple functions, or other functions that are similarly easy to un-
derstand. However, these notions of convergence were rather badly behaved. For example,
we say that a mode of convergence M is topologizable if there is a topology T such that a
sequence of functions converges in T iff it converges in M . Almost pointwise convergence,
for one, is not topologizable. In particular, one cannot find a Banach space B such that
almost pointwise convergence is equivalent to convergence in B. The only modes of conver-
gence that we have considered so far which are induced by the norm of a Banach space are
convergence in L1, uniform convergence, and convergence in L∞.

But why do we like Banach spaces? Well, Banach spaces have an algebraic structure,
since they are vector spaces. More critically, if B is a Banach space with norm || · ||, and
f ∈ B, then ||f || can reasonably viewed as the “size” of f . In applications, being able to size
functions is crucial. Many theorems in PDE amount to proving that if a function f , that
we can think of as “initial data” for some dynamical system, is “small enough” (in the sense
that ||f || < δ for some δ that does not depend on f), then the dynamical system stabilizes
to 0. As a concrete example, models of the spread of an infection inside a human body often
have the property that if the initial data f is small enough (thus very few virions are present
in the body), then the infection will die out.

Another useful feature of Banach spaces is the notion of duality. Given a Banach space
B of functions, one can introduce the dual space B∗ of bounded linear maps B → C; then
B∗ is a Banach space, whose elements can often be canonically identified with functions that
we want to think of as “dual to” the functions in B. One then has an “inner product”

〈·, ·〉 : B∗ ×B → C

where, if f is the function which is canonically identified with a linear map λ ∈ B∗, and
g ∈ B, then

〈f, g〉 = λ(g).

111
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Under favorable circumstances, this inner product will behave very similarly to the inner
products that one learns about in linear algebra. For example, two functions f, g are said to
be orthogonal provided that 〈f, g〉 = 0. One can then generalize such tools as the spectral
theorem and the Cauchy-Schwarz inequality, so that we will be able to bring the power of
linear algebra to bear on measurable functions.

In this chapter we will introduce p-norms for p ∈ (1,∞), which are the norms defined on
Banach spaces Lp, and generalize both L1 and L∞. The duality theory for Lp is known as
Hölder duality . Hölder duality is especially effective when p = 2, since there is a canonical
isomorphism L2 → (L2)

∗
, and it is the case p = 2 that will be especially important when we

consider applications in the following chapter.
Throughout, we fix a measured space (X,µ) and a Banach space B to serve as a codomain.

Later we will need to assume that µ is σ-finite, but for now the general setting will be quite
sufficient. Recall that we identify two functions which are equal almost everywhere, and that
if we really need to refer to a particular representative of an equivalence class f , we call it a
“version” of the function f . This identification will be critical for our Banach spaces to be
well-defined!

6.1 Lp-norms

Recall that we defined the L1-norm

||f ||1 =

∫
X

||f || dµ.

Thus ||f ||1 could be small even if ||f || was quite large or even infinite, as long as the set
where ||f || was large had a small measure. We defined the L∞-norm ||f ||∞ to be the infimum
of all M such that ||f || ≤ M almost everywhere; thus ||f ||∞ could be small even if ||f || did
not tend to 0 anywhere, as long as ||f || did not ever go to infinity. TODO: Draw a picture.
We seek to consider a weighted average of the two extremes.

Definition 6.1.1. Let p ∈ (1,∞). The Lp-norm of a measurable function f is

||f ||p =

(∫
X

||f ||p dµ
)1/p

. (6.1)

We let Lp(X → B, µ), often abbreviated to Lp or similar, be the vector space of all measur-
able functions f such that ||f ||p <∞.

Here L stands for “Lebesgue”; thus Lp is sometimes known as a Lebesgue space. How-
ever, the term “Lebesgue space” also refers in the literature to the measured space [0, 1]
with Lebesgue measure. Worse, while the key fact about Lp spaces is Hölder duality, a
“H’́older space” is a space of continuous functions satisfying a certain inequality. So, to
avoid confusion, we will simply call the spaces that we defined above Lp sspaces .

We will shortly prove that the above definition makes sense, but, assuming that || · ||p
is a norm, what does it measure? If f is a function that we can think of as a “wave” of
amplitude A, supported on a set of measure V , then one approximately has

||f ||p ≈ AV 1/p. (6.2)
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Here and throughout we take the very important convention that 1/∞ = 0. (To see a precise
version of (6.2), if f is the wave f(x) = Aeix1E where E is a set of measure V , then, for
Lebesgue measure,

||f ||p = ||Aeix1E||p = A||1E||p = Aµ(E)1/p = AV 1/p,

which partially justifies the intuition (6.2).) In more advanced courses one introduces the
Sobolev norms W s,p which not only takes into account amplitude and support but also
frequency; if f has frequency N then ||f ||s,p ≈ AN sV 1/p. In fact, W 0,p = Lp. We will discuss
the case p = 2 in the exercises.

Since f is measurable and ||f || is nonnegative, ||f ||p is well-defined; either ||f ||p ∈
L1(X → C), in which case f ∈ Lp(X → B), or ||f ||p = ∞. We need to check that
|| · ||p satisfies the definition of a norm, and that Lp is a vector space, in order for the above
definition to make sense.

We first check the first two properties of a norm.

Lemma 6.1.2. One has ||f ||p = 0 iff f = 0, and ||cf ||p = |c| · ||f ||p.

Proof. It is clear that |c| · ||f ||p = ||cf ||p. If f = 0, then ||f ||p = 0. Conversely, if f 6= 0 on a
positive measure set, say E, then

||f ||pp ≥
∫
E

||f ||p dµ > 0.

(Here we are using the fact that we identify functions which are equal almost everywhere!)

Thus we just need to check the triangle inequality. Before we do that, however, we will
need to prove some inequalities and equations which will turn out to be highly useful in their
own right. We first assert that

||||f ||q||p = ||f ||qpq (6.3)

whenever p, q ∈ [1,∞] and f ∈ Lpq or ||f ||q ∈ Lp; this follows straight from the definitions.

Lemma 6.1.3. One has

exp(θx+ (1− θ)y) ≤ θex + (1− θ)ey (6.4)

whenever θ ∈ [0, 1] and x, y ∈ R.

Proof. See Exercise 6.1.14.

Recall that [1,∞] is the set of all real numbers ≥ 1, along with ∞. Here and after we
take the convention 1/∞ = 0 and 1/0 =∞.

Definition 6.1.4. Let p, q ∈ [1,∞]. If

1

p
+

1

q
= 1,

we say that p, q are Hölder duals , and write q = p∗.
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For example, 1∗ = ∞, and 2∗ = 2. One checks at once that p∗ is unique, that p∗∗ = p,
and that if p < q then q∗ < p∗.

Theorem 6.1.5 (Young’s product inequality). If p ∈ (1,∞) and q = p∗ then for every
a, b ≥ 0,

ab ≤ ap

p
+
bq

q
.

Proof. By (6.4) one has

ab = exp(log a+ log b) = exp

(
log ap

p
+

log bq

q

)
≤ exp(log ap)

p
+

exp(log bq)

q
=
ap

p
+
bq

q
;

here we are taking θ = 1/p and 1−θ = 1/q, and letting log denote the natural logarithm.

Theorem 6.1.6 (Hölder’s inequality). Let p, q ∈ [1,∞]. Let f ∈ Lp(X → C), g ∈ Lq(X →
C), and q = p∗. Then fg ∈ L1(X → C) and

||fg||1 ≤ ||f ||p · ||g||q. (6.5)

Proof. Without loss of generality, we can assume that p ≤ q. If p = 1 then q = ∞, and
this is just the triangle inequality for L1 and L∞. Otherwise, 1 < p < q < ∞, so Young’s
inequality for products applies.

Let F = f/||f ||p and G = g/||g||q. Then ||F ||p = ||G||q = 1. By Young’s inequality for
products,

||FG||1 =

∫
X

||FG|| ≤
∫
X

||F ||p

p
+
||G||q

q

=
||F ||pp
p

+
||G||qq
q

=
1

p
+

1

q
= 1.

Multiplying both sides by ||f ||p · ||g||q we see that

||fg||1 = ||F ||f ||p ·G||g||q||1 ≤ ||f ||p||g||q.

This is what we wanted to prove.

To motivate Hölder’s inequality, suppose that f is a wave of amplitude A1 and supported
on a set of measure V1. Suppose that g has amplitude A2 and supported on a set of measure
V2. Then the left-hand side of (6.5) is maximized when one has “constructive interference”,
which is only possible when f and g are supported on the same set, thus V1 = V2. In that
case fg has amplitude A1A2 and support on a set of measure V

1/p
1 V

1/p∗

2 = V
1/p+1/p∗

1 = V1.
This is exactly what Hölder’s inequality would predict.

Theorem 6.1.7 (Minkowski’s triangle inequality). Let p ∈ [1,∞] and f, g ∈ Lp. Then
f + g ∈ Lp and

||f + g||p ≤ ||f ||p + ||g||p. (6.6)

Thus Lp is a normed space with norm || · ||p.
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Proof. If f + g = 0 then there is nothing to prove. Otherwise, ||f + g||p > 0 and

||f + g||pp =

∫
X

||f + g||p =

∫
X

||f + g|| · ||f + g||p−1

=

∫
X

||f || · ||f + g||p−1 +

∫
X

||g|| · ||f + g||p−1∣∣∣∣||f || · ||f + g||p−1
∣∣∣∣

1
+
∣∣∣∣||g|| · ||f + g||p−1

∣∣∣∣
1
.

Now we apply Hölder’s inequality. In fact,∣∣∣∣||f || · ||f + g||p−1
∣∣∣∣

1
≤ ||f ||p ·

∣∣∣∣||f + g||p−1
∣∣∣∣
p∗
.

But (6.3) says that ∣∣∣∣||f + g||p−1
∣∣∣∣
p∗

= ||f + g||p−1
q

where q = p∗(p− 1). Thus

||f + g||pp ≤ (||f ||p + ||g||p)||f + g||p−1
q .

But 1/p∗ = 1− 1/p, so p = q. Therefore, dividing both sides by ||f + g||p−1
p , one concludes

(6.6).
We have verified the triangle inequality, so || · ||p is a norm. If f, g ∈ Lp and c ∈ C then

f + g ∈ Lp by the triangle inequality, and cf ∈ Lp as we have already shown. So Lp is a
normed vector space.

Note that the proof of Minkowski’s inequality makes sense even for functions which are
not valued in C, since we never actually multiply the functions themselves, only their norms.
So Lp(X → B) is a Banach space even if B 6= C.

We stop to consider the case that µ is counting measure.

Definition 6.1.8. Let A be a set. Let ν be counting measure on A. We define `p(A) =
Lp(A→ B, ν). If A = N, we leave A as understood and simply let `p = Lp(N→ B, ν). Here
`p is pronounced “little LP.”

Thus `p is the space of sequences x in B with

∞∑
n=1

|xn|p <∞.

This space comes up in many useful examples, and has many nice properties.
Let us state some useful corollaries of Hölder’s inequality.

Corollary 6.1.9 (Hölder interpolation). Let 1 ≤ s ≤ r ≤ t ≤ ∞ and

1

r
=
θ

s
+

1− θ
t

where θ ∈ [0, 1]. Then, for every f ∈ Ls(X → C) ∩ Lt(X → C), f ∈ Lr(X → C) and

||f ||r ≤ ||f ||θs · ||f ||1−θt . (6.7)
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Proof. Since
θr

s
+

(1− θ)r
t

= 1,

we can use Hölder’s inequality to check

||f ||rr =

∫
X

||f ||θr · ||f ||(1−θ)r ≤
∣∣∣∣||f ||θr∣∣∣∣ s

θr

·
∣∣∣∣||f ||(1−θ)r∣∣∣∣ t

(1−θ)r
;

taking rth roots of both sides and using (6.3), we prove (6.7).

Corollary 6.1.10 (Hölder’s inequality with induction). Let p1, . . . , pm, r ∈ [1,∞] with

1

r
=

m∑
j=1

1

pj
.

Then ∣∣∣∣∣
∣∣∣∣∣
m∏
j=1

fj

∣∣∣∣∣
∣∣∣∣∣
r

≤
m∏
j=1

||fj||pj

for any f1, . . . , fm.

Proof. See Exercise 6.1.15.

Corollary 6.1.11 (Cauchy-Schwarz inequality). Whenever f, g ∈ L2(X → C) one has

||fg||1 ≤ ||f ||2 · ||g||2. (6.8)

In particular, if v, w are vectors in Cd, then

|〈v, w〉|2 ≤ 〈v, v〉 · 〈w,w〉. (6.9)

Proof. The first claim (6.8) is just Hölder’s inequality when p = 2. The second claim (6.9)
is (6.8) specialized to Cd = `p({1, . . . , d} → C).

Corollary 6.1.12 (Hölder comparison). Suppose that p ≤ q and f is measurable X → C.
If µ is a finite measure, then

||f ||p ≤ µ(X)1/p−1/q||f ||q (6.10)

and so Lq ⊆ Lp. On the other hand, if µ is a granular measure, then Lp ⊆ Lq and ||f ||q .p,q

||f ||p.

Proof. The inequality (6.10) is equivalent to

||1||f ||p||1 ≤ ||1||q/(q−p) · ||||f ||
p||q/p

by (6.3) and the fact that ||1||pq/(q−p) = µ(X)1/p−1/q. Thus (6.10) is a consequence of Hölder’s
inequality. We leave the proof of the case when µ is granular as Exercise 6.1.16.
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Hölder comparison is especially useful when µ is a probability measure, in which case it
can be interpreted as the statement that every bounded random variable has a finite standard
deviation and finite expected value, or when µ is counting measure, in which case it can be
interpreted as saying that every absolutely summable sequence is bounded.

Let us finish the section by giving an example of Banach-valued Lp spaces which fre-
quently come up in applications. Let T > 0. An evolution equation (say, on an open set
U ⊆ Rd) is a partial differential equation satisfied by functions u : [0, T ] × U → C relating
the “time derivatives” of u (i.e. those in the domain [0, T ]) to the “space derivatives” (those
in U). For instance, the Schrödinger equation

−i∂u
∂t

+ ∆u = f,

where f is given, t is the time variable ∈ [0, T ], ∆ is the Laplace operator on U , so

∆v(t, x1, . . . , xd) =
d∑
i=1

∂2v

∂x2
i

(t, x1, . . . , xd),

and i2 = −1, is an evolution equation. In the theory of evolution equations it is frequently
useful to define a function u(t) : U → C by u(t)(x) = u(t, x), so we think of u not as a
function of two variables [0, T ] × U → C but a function on [0, T ] which returns functions
on U . In this case we often assume that there is a q ∈ [1,∞] such that for every t ∈ [0, T ],
u(t) ∈ Lq(U). So we view u as a function [0, T ]→ Lq(U), and we will often assume there is
a p ∈ [1,∞] such that u ∈ Lp([0, T ]→ Lq(U)). This motivates the following definition.

Definition 6.1.13. A mixed norm is a norm of the form

||u||Lp([0,T ]→Lq(U)) =

(∫ T

0

||u(t)||pLq(U) dt

)1/p

defined on functions u : [0, T ]→ Lq(U → C).

Later in the text we will have exercises extending the results in the text to spaces with
mixed norms.

Exercise 6.1.14. Prove (6.4) using the fact that exp′ = exp.

Exercise 6.1.15. Prove Corollary 6.1.10.

Exercise 6.1.16. Complete the proof of Corollary 6.1.12.

Exercise 6.1.17. Suppose that f ∈
⋂
p∈[1,∞] L

p. Show that

||f ||∞ = lim
p→∞
||f ||p.

To do this, try using Corollary 6.1.12.

Definition 6.1.18. Let V be a vector space. A map || · || : V → [0,∞) is called a quasinorm
if for every f ∈ V and c ∈ C, ||f || = 0 iff f = 0, ||cf || = |c| · ||f ||, and one has a quasitriangle
inequality ||f + g|| . ||f ||+ ||g||.
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Exercise 6.1.19. One can also define ||f ||p when p ∈ (0, 1), but then || · ||p is not well-
behaved. In fact, define the Lp-quasinorm by (6.1) for p ∈ (0, 1). Show that || · ||p is in fact
a quasinorm, but the triangle inequality does not hold.

Exercise 6.1.20. Let f ∈
⋂
p∈(0,δ) L

p, where Lp is meant in the sense of Exercise 6.1.19 and
δ > 0 is a small constant. Let C be the carrier of f . Show that

µ(C) = lim
p→0
||f ||p.

Thus we may define the L0-quasinorm ||f ||0 = µ(C). Show that the L0-quasinorm is a
quasinorm, but the triangle inequality does not hold.

Exercise 6.1.21. This exercise is an example of a common phenomenon in PDE and physics:
if p is chosen correctly, then ||u(t)||Lp can often be viewed as the “energy” of the scalar field
u(t). Here u : [0, T ]→ Lp(U), and U ⊆ Rd is an open set. Consider the heat equation

∂tu−∆u = f,

where f is given and u is unknown. The heat energy of u at time t is ||u(t)||L2(U).
Show that if u is a smooth solution to the homogeneous heat equation ∂tu−∆u = 0 such

that u = 0 on the boundary ∂U , then whenever t ≤ t′,

||u(t′)||L2(U) ≤ ||u(t)||L2(U).

(Hint: What is the derivative of t 7→ ||u(t)||L2(U)?) Conclude that if U is compact,

∂tu−∆u = ∂tv −∆v

on U , and u = v = 0 on ∂U , then u = v almost everywhere (and hence everywhere, since
u, v are smooth).

Exercise 6.1.22 (Dirichlet’s principle). Let U be a bounded open subset of Rd, and let
f : ∂U → R be a continuous function defined on the boundary of U . Dirichlet’s problem for
the Laplace equation

∆u = 0 (6.11)

is to find a smooth function u such that (6.11) holds on U and u = f on ∂U . Define the
Dirichlet energy of u to be

E(u) = ||∇u||L2(U).

Let A be given by
A = {u ∈ C2(U) ∩ L2(U) : u|∂U = f}

where C2(U) is the space of continuous functions U → R such that u|U is twice-differentiable.

1. Show that u is a solution of Dirichlet’s problem iff u ∈ A and u minimizes the Dirichlet
energy E(u) among elements ofA. (Hint: For one direction, you should use the Cauchy-
Schwarz inequality; for the other, let g(t) = E(u + tv) where v ∈ A, and show that
0 = g′(0).)

2. Show that if f = 0 and u is a solution of Dirichlet’s problem then E(u) = 0.

3. Show that there is at most one solution to Dirichlet’s problem.

Later, when we have more advanced techniques at our disposal, we will actually solve Dirich-
let’s problem (Exercise 6.4.17).
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6.2 Convergence in Lp

We now show that Lp is a Banach space. First we need to relate convergence in Lp to other
modes of convergence, especially convergence in measure.

Theorem 6.2.1 (Markov’s inequality). For any measurable function f and ε > 0,

µ({||f || ≥ ε}) ≤
(
||f ||p

ε

)p
. (6.12)

Proof. Let
E = {x ∈ X : ||f || ≥ ε}.

Then
εp1E ≤ ||f ||p. (6.13)

Indeed, if x ∈ E then εp1E(x) = 0; otherwise εp1E(x) = εp ≤ ||f(x)||p. Integrating both
sides of (6.13) dµ we get (6.12).

We now remind the reader what convergence in a normed space means: one has fn → f
in a normed space V provided that for every ε > 0 and every n large enough, ||fn−f ||V < ε.
Similarly, (fn)n is Cauchy in V provided that for every ε > 0 and every n,m large enough,
||fn − fm||V < ε.

Corollary 6.2.2. If fn → f in Lp then fn → f in measure, and there is a subsequence
which converges to f pointwise. Moreover, if (fn)n is Cauchy in Lp, then (fn)n is Cauchy in
measure, and there is a subsequence which is Cauchy almost everywhere.

Proof. By hypothesis and Markov’s inequality, one has

µ({||fn − f ||p ≥ ε}) ≤
||fn − f ||pp

εp

which implies convergence in measure. The proof of Cauchyness in measure is similar,
replacing f with fm in the above inequality. Convergence almost everywhere follows from
the fundamental theorem of integration.

Theorem 6.2.3. Lp is a Banach space.

Proof. Suppose that (fn)n is Cauchy in Lp; then there is a subsequence (fnk)k and a f such
that

lim
k→∞

fnk = f

almost everywhere. Therefore for every n and x,

||f(x)− fm(x)||p = lim
k→∞
||fnk(x)− fm(x)||p.

Therefore by Fatou’s lemma,

||f(x)− fm(x)||pp ≤ lim
k→∞

∫
X

||fnk(x)− fm(x)||p dµ = lim
k→∞
||fnk − fm||pp.
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Taking the limit as m→∞ of both sides and using the fact that (fn)n was Cauchy in Lp,

lim
m→∞

||f(x)− fm(x)||pp ≤ lim
k→∞

lim
m→∞

||fnk − fm||pp = 0.

This implies that fm → f in Lp; in particular, f ∈ Lp.

TODO: Monotone and dominated convergence
TODO: ISF is dense
TODO: Separability

Exercise 6.2.4 (strongtype Hardy-Littlewood maximal inequality). Let p ∈ (1,∞], f ∈
Lp(Rd), and let Mf denote the Hardy-Littlewood maximal function of f . Show that

||Mf ||Lp(Rd) .p,d ||f ||Lp(Rd)

using the weaktype Hardy-Littlewood maximal inequality.

6.3 Duality and representation

We now come to the important notion of Hölder duality, which we should motivate before
stating.

“Duality” is a funny word that many mathematicians use, but only a few would dare try
to give a precise definition of. For our purposes, we can think of an “algebraic” object X (a
ring, an abelian group, et cetra) as being “dual” to a “geometric” object X∗ (a topological
space, a manifold, et cetra) if there is a “good bijection” between “good” maps X → Y (say
homomorphisms) and “good” maps Y ∗ → X∗ (continuous maps, smooth maps, et cetra),
and another good bijection between good maps Y → X and good maps X∗ → Y ∗. The data
consisting of the good bijections, for every such pair (X,X∗), is then known as a “duality
theory”. We leave all the words in scare quotes undefined; the reader who is familiar with
modern algebra may try to replace them with precisely defined terms, perhaps using the
language of category theory or universal algebra. However, there is a good chance that the
resulting notion will not quite be satisfied by Hölder duality, because in the edge cases p = 1
and p =∞, Hölder duality is rather ill-behaved.

One duality theory that every mathematician is familiar with is duality on finite-dimensional
vector spaces. Finite-dimensional vector spaces are both “algebraic” and “geometric”, and
indeed if V is a finite-dimensional vector space over a field K, then there is an isomorphism
V → V ∗, where V ∗ is the finite-dimensional vector space of all linear maps V → K. If V
consists of column vectors over K, then V ∗ can be canonically identified with a space of
row vectors over K. For any linear map V → W one obtains its adjoint map W ∗ → V ∗.
In particular, if we select an isomorphism V → V ∗, then we can talk about the self-adjoint
maps V → V , which have especially nice properties (for example, being orthogonally diago-
nalizable). Moreover, there is a “canonical” isomorphism V → V ∗∗. Here we again use scare
quotes for a word that we will refuse to define precisely.

We try to recover the same ideas in higher generality, replacing finite-dimensional vector
spaces with Lp spaces. Since every finite-dimensional vector space over C is indeed isomorphic
to `p({1, . . . , n} → C) for some n and any p, this is indeed a generalization.
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Throughout, we will assume that µ is a σ-finite measure valued in C and that B is a
Hilbert space with inner product denoted

(f, g) 7→ fg.

(TODO: Explain this? Is this allowed by mixed norm duality??) Actually, since µ is valued
in C, it is no loss of generality to assume that µ is nonnegative; so when convenient we will
take µ = µ.

Definition 6.3.1. Let X be a normed space. The dual space X∗ of X is the Banach space
of all linear maps X → C such that

|Tf | . ||f ||X , (6.14)

with the norm

||T ||X∗ = sup
||f ||X≤1

||Tf ||.

An element of X∗ is known as a linear functional or a covector on X.

To check that X∗ is indeed a Banach space, one needs to use the fact that C is itself a
Banach space; see Exercise 6.3.8.

Recall that p∗ is the Hölder dual of p; we want a canonical isomorphism

Lp
∗ ∼= (Lp)∗

whenever possible.

Lemma 6.3.2. Let p ∈ [1,∞]. One has an injective linear map λ : Lp
∗ → (Lp)∗ defined by

λ(g)(f) =

∫
X

fg dµ. (6.15)

Proof. By Hölder’s inequality,

|λ(g)(f)| = ||fg||1 ≤ ||f ||p · ||g||q,

which implies (6.14).

We will henceforth omit the mention of λ whenever possible, and write

〈f, g〉 = λ(g)(f)

whenever f ∈ Lp∗ and g ∈ Lp.

Theorem 6.3.3 (Hölder duality, part I). Let p ∈ [1,∞]. Suppose that λ is as in (6.15).
Then ||λg||(Lp)∗ = ||g||p∗ . Moreover, if p <∞, λ is an isomorphism.

TODO
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Corollary 6.3.4. If p ∈ [1,∞], there is an injective linear map ϕ : Lp → (Lp)∗∗ defined by

〈ϕ(f), g〉 = 〈g, f〉

which preserves norms. Moreover, if p ∈ (1,∞) then ϕ is an isomorphism.

TODO

Henceforth, we simply write Lp = (Lp)∗∗ and (Lp)∗ = Lp
∗

(whenever these spaces are
isomorphic!) to emphasize that these isomorphisms are in some sense “natural”; they do not
depend on a choice of basis. In particular, we will always identify a function f ∈ Lp∗ with
the corresponding linear map f : Lp → C; to avoid writing awkward things like f(g), we will
continue to use 〈f, g〉 to mean the evaluation of f at g ∈ Lp when thinking of f as a linear
map.

Corollary 6.3.5. For every bounded linear map ψ : L2 → C there is a unique f ∈ L2 such
that for every g ∈ L2, 〈f, g〉 = ψ(g). In particular, 〈·, ·〉 is an inner product, making L2 into
a Hilbert space (TODO).

Theorem 6.3.6 (Hölder duality, part II). Let p, q ∈ (1,∞). Then for every bounded linear
map T : Lp → Lq there is a unique bounded linear map T ∗ : Lq

∗ → Lp
∗

satisfying

〈Tf, g〉 = 〈f, T ∗g〉.

Definition 6.3.7. The map T ∗ is called the adjoint of T .

TODO proof

Exercise 6.3.8. Prove that if X is a normed space, then X∗ is Banach.

Exercise 6.3.9. Show that (`1)
∗∗ 6= `1. To do this, first show that if (Lp)∗ is separable, then

Lp is separable.

Exercise 6.3.10. Show that (`1)
∗∗ 6= `1 directly, by filling in the following outline. Let

µ : 2N → {0, 1} be an additive (but not σ-additive) function such that for every finite set
A ⊂ N, µ(A) = 0. Here µ can be built using Zorn’s lemma1 or a similar substitute. If A ⊆ N,
one can define

〈µ, 1A〉 = µ(A)

and then extend this definition to 〈µ, x〉, whenever x ∈ `∞. If µ is induced by an element of
`1, however, one can conclude a contradiction.

1Any proof of that (`1)
∗∗ 6= `1 must use the axiom of choice somehow, because in Solovay’s model of set

theory, wherein there are no nonmeasurable functions, there are also no elements of (`1)
∗∗

which are not
elements of `1.
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6.4 Compactness of the unit ball

An annoying technical difficulty with Lp spaces is that, unlike Cd, the unit ball of Lp is not
compact (Exercise 6.4.9). This is rather problematic: in many situations in analysis, one is
given a sequence and needs to extract a limit point from the sequence. In this section we
use Hölder duality introduce a new topology on Lp in which the unit ball is compact, but
which does not arise from a norm.

Definition 6.4.1. Let p ∈ (1,∞). We say that a sequence (fn)n ∈ Lp converges weakly in
Lp to f ∈ Lp provided that

lim
n→∞
〈fn, g〉 = 〈f, g〉

for every g ∈ Lp∗ .
To avoid confusion, we will say that a sequence converges strongly in Lp if it converges

in norm. The words “strong” and “weak” are motivated by the following lemma:

Lemma 6.4.2. Let p ∈ (1,∞). If a sequence converges strongly in Lp, then it converges
weakly in Lp.

Proof. One has
〈fn − f, g〉 ≤ ||fn − f ||p||g||p∗

for every g ∈ Lp∗ .

The idea of weak convergence is the following. Say that f(x) is the temperature of a
bucket of water at point x. Then one measures f(x) by taking a thermometer, which we
model by g, chosen so that the thermometer picks up the temperature in a small ball near
x (so g has compact support centered near x). Then the thermometer returns 〈f, g〉. So
fn → f weakly in Lp if for every thermometer g ∈ Lp∗ , the thermometer g thinks that the
error fn − f is negligible.

We now show that weak convergence is induced by a topology, so it is in some sense
“better behaved” than, say, convergence almost pointwise.

Definition 6.4.3. Let p ∈ (1,∞) and g ∈ Lp∗ . We define the weakstar seminorm

pg(f) = |〈f, g〉|.

The weakstar topology on Lp is the topology induced by the weakstar seminorms {pg : g ∈
Lp
∗}.
The term “weakstar” is motivated by the fact that the weakstar topology will induce

weak convergence, and that the weakstar topology is induced by duality (hence “star”).
There are several suspicious things about this definition. First, we check that pg is a

seminorm. Indeed, one has a triangle inequality

pg(f1 + f2) = |〈f1 + f2, g〉| = |〈f1, g〉+ 〈f2, g〉| ≤ pg(f1) + pg(f2)

and also pg(cf) = cpg(f). We recall that a set of seminorms induces a topology: the open
neighborhoods of f0 ∈ Lp are generated by sets of the form

Bg(f0, ε) = {pg(f0 − f) < ε}

which are open balls for the seminorm g.
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Lemma 6.4.4. A sequence (or net) converges weakly in Lp iff it converges in every weakstar
seminorm of Lp, which happens iff it converges in the weakstar topology of Lp.

Proof. The first equivalence is due to the definition of the weakstar seminorm; the latter is
a general fact about topologies induced by seminorms.

Now we come to the key fact about the weakstar topology.

Theorem 6.4.5 (Banach-Alaoglu compactness). The closed unit ball of Lp is compact in
the weakstar topology.

The general proof uses a black box in the form of Tychonoff’s theorem2 so we start by
proving a special case, which is the particularly useful one in practice.

Theorem 6.4.6 (Alaoglu’s sequential compactness theorem). Suppose that Lp
∗

is separable.
Then for every bounded sequence (fn)n in Lp, there is a f ∈ Lp such that a subsequence
(fnk)k converges to f weakly in Lp.

Proof. Let D be a countable dense subset of the unit sphere {g ∈ Lp∗ : ||g||p∗ = 1} of Lp
∗
.

Let
d(f1, f2) =

∑
g∈D

2−npg(f1 − f2).

Since pg(f1 − f2) ≤ ||g||p∗||f1 − f2||p and ||g||p∗ ≤ 1, we can sum the geometric series to
conclude that d(f1, f2) ≤ 1. We claim that d is a semimetric.3 We just need to check the
triangle inequality, and indeed,

d(f1, f3) =
∑
g∈D

2−npg(f1 − f3) ≤
∑
g∈D

pg(f1 − f2) + pg(f2 − f3)

2n
= d(f1, f2) + d(f2, f3)

since pg is a seminorm.

Lemma 6.4.7. A sequence converges in d iff it converges weakly in Lp.

Proof. If fn → f weakly in Lp then for every g ∈ Lp∗ , pg(fn − f)→ 0, so d(fn, f)→ 0.
Conversely, if (fn)n is a sequence in Lp and f ∈ Lp, and d(fn, f)→ 0, then pg(fn−f)→ 0

for every g ∈ D. But if ||g||p∗ = 1 is arbitrary, and gm ∈ D have gm → g, then

lim
n→∞

pg(fn − f) = lim
m→∞

lim
n→∞

pgm(fn − f) = 0

so that pg(fn−f)→ 0 for every g in the unit sphere, and hence in all of Lp
∗

by rescaling.

We now use a variant of Cantor’s diagonal argument to show that the unit ball of Lp under
the semimetric d is compact, which, along with Lemma 6.4.7, implies Alaoglu’s theorem. Fix
(fn)n, say ||fn||p . 1, and an enumeration (gm)m of D. Then

|〈fn, g1〉| . ||g1||p∗ = 1

2The general proof must use a particularly strong form of the axiom of choice, as most results about
compactness of very large spaces must, so this is unavoidable.

3One can use Exercise 6.4.10 to show that d is actually a metric, but we won’t need this.
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so by compactness of the closed unit ball of C, there is a subsequence (fn1
k
)
k

such that

(〈fn1
k
, g1〉)

k
is a Cauchy sequence.

Suppose we have defined (fnjk
)
k
; then |〈fnjk , g1〉| . 1 so there is a subsequence (fnj+1

k
)
k

of

(fnjk
)
k

such that (〈fnj+1
k
, gj+1〉)

k
is a Cauchy sequence. Moreover, since (fnj+1

k
)
k

is a subse-

quence of (fn`k)k
whenever ` ≤ j, (〈fnj+1

k
, g`〉)

k
is also a Cauchy sequence.

Let fnk = fnkk . Then for any j, after finitely many entries (fnk)k is a subsequence of

(fnjk
)
k
, so (〈fnk , gj〉)k is a Cauchy sequence, and hence we can set

〈f, gj〉 = lim
k→∞
〈fnk , gj〉.

This defines f as a map D → C; then f extends to a bounded linear map Lp
∗ → C

uniquely, since D was dense in the unit sphere of Lp
∗
. By Hölder duality, this implies that

f ∈ (Lp)∗∗ = Lp. By construction, d(fnk , f)→ 0, so the unit ball of Lp is compact under the
semimetric d.

Proof of the Banach-Alaoglu theorem. Let B be the closed unit ball of Lp and B∗ the closed
unit ball of Lp

∗
. Then any f ∈ B maps B∗ into a closed subset of D = {z ∈ C : |z| ≤ 1}.

Thus B is a closed subset of the space DB∗ of functions B∗ → D. Moreover, the definition
of the weakstar topology is exactly the definition of the product topology when restricted to
DB∗ . So DB∗ is compact by Tychonoff’s theorem and hence B, a closed subset of DB∗ , is as
well.

One application of compactness theorems, which we discuss in the exercises, is to show
that certain PDE have solutions. The idea is to consider a set of “admissible functions”
A, show that A is compact in some function space X, and then show that an admissible
function u ∈ A is a solution iff u minimizes the norm ||u||X . A famous example of this is
the Riemann mapping theorem, which says that for every simply connected open set U ⊆ C
there is a holomorphic bijection with holomorphic inverse U → {z ∈ C : z < 1}. We
sketch the relevant part of the proof of the Riemann mapping theorem in Exercises 6.4.14
and 6.4.15, and the solution of Dirichlet’s problem in Exercise 6.4.17.

For the latter, we need a definition that we will use in some more exercises later on, and
is of fundamental importance in applications. Recall that ∇iu is the vector of all partial
derivatives of order i of u, so ∇iu : U → Cdi if U ⊆ Rd is open and u : U → C. In
particular, ∇0u = 0. Since Cdi is a Banach space (of dimension di), one can consider the
norms ||∇iu||Lp .

Definition 6.4.8. Let U ⊆ Rd be an open set and s ∈ N. The Sobolev norm is the norm

||u||Hs(U) =
s∑
i=0

||∇u||L2 .

The space Hs(U) is the completion of the space of smooth functions u : U → C such that
||u||Hs(U) <∞.

In particular, a sequence (un)n converges (strongly) in Hs (say, to u) if for every i ∈
{0, . . . , s}, ∇iu→ u strongly in L2. One can also define weak convergence in Hs by simply
requiring that the derivatives converge weakly in L2.
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Exercise 6.4.9. Let X be a Banach space. Show that the unit ball of X is compact (in the
norm topology, not the weakstar topology) iff X is finite-dimensional.

Exercise 6.4.10. Show that the weakstar topology is Hausdorff; that is, if f1, f2 ∈ Lp, then
there are g1, g2 ∈ Lp

∗
and a ε > 0 such that Bg1(f1, ε) ∩Bg2(f2, ε) is empty.

Exercise 6.4.11 (Riemann-Lebesgue). Show that if fn(x) = sinnx, then fn → 0 weakly in
L2([0, 2π]) but not strongly.

Exercise 6.4.12. Show that if fn = 1{n}, then fn → 0 weakly in `2 but not strongly.

Exercise 6.4.13 (Banach-Saks). Let (xn)n be a bounded sequence in L2. Show that there
is a subsequence (xnk)k and a x ∈ L2 such that

lim
n→∞

1

N

N∑
k=1

xnk = x

strongly in L2.

Exercise 6.4.14 (Arzelà-Ascoli). Modify the proof of Alaoglu’s sequential compactness
theorem to show that, ifX is a compact metric space, then C(X) (with L∞ norm) satisfies the
following result: a subset A ⊆ C(X) is compact iff A is closed, bounded, and equicontinuous
in the sense that for every ε > 0 there is a δ > 0 such that for every f ∈ A and every
x1, x2 ∈ X if d(x1, x2) < δ then |f(x1)−f(x2)| < ε. (Here δ does not depend on f or x1, x2.)

Exercise 6.4.15 (Montel’s little theorem — for those who know complex analysis). Let
U be an open subset of C, and let H(U) be the space of holomorphic functions U → C.
Suppose that F ⊂ H(U) is locally uniformly L∞; that is, for every compact set K ⊂ U
there is a MK > 0 such that for every f ∈ F , ||f |K||∞ ≤ MK . (Hint: You may need to
use Cauchy’s integral formula and Exercise 6.4.14.) Show that every sequence in F has a
subsequence which converges in L∞l .

Exercise 6.4.16 (Banach-Alaoglu in Hilbert spaces). Let H be any Hilbert space. Show
that the unit ball of H is weakstar compact.

Exercise 6.4.17 (solving Dirichlet’s problem). Let U be an open subset of Rd such that
the boundary ∂U is a smooth manifold, and let f : ∂U → R be a continuous function. If
you’re not comfortable with smooth manifolds, you may assume that U is a ball, in which
case ∂U is a sphere. We are in the position to show that Dirichlet’s problem, as defined in
Exercise 6.1.22, has a solution, if we are willing to take a result known as Weyl’s lemma as
a black box.

Let A be the admissible set, and let E be the Dirichlet energy, defined in 6.1.22. Proceed
as follows:

1. Let (un)n be a sequence of functions in A such that E(un)→ infv∈AE(v). Show that
(un)n is a bounded sequence in H1.

2. Show that if (vn)n is a sequence of functions which converge in H1 to a function v ∈ H1,
then E(vn)→ E(v).
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3. Invoke Exercise 6.4.16.

4. Show that if u is smooth, then u solves Dirichlet’s problem iff for every smooth function
v which is zero in an open set containing ∂U ,

〈u,∆v〉L2 = 0. (6.16)

The problem of finding a u ∈ L2(U) (not necessarily smooth) such that for every
smooth v which is zero near ∂U , (6.16) holds, is called the weak Dirichlet problem.

5. Invoke Weyl’s lemma, which says that if u solves the weak Dirichlet problem and ∂U
is a smooth manifold, then u is smooth.

The above proof outline is quite common in PDE and its applications.

6.5 Interpolation of operators

TODO

Exercise 6.5.1 (Riesz-Thorin interpolation in mixed norms). Let p1, p2, q1, q2, r ∈ [1,∞].
Let T : Lr1 + Lr2 → Lp0(X → Lq0) + Lp1(X → Lq1) be a linear operator. Establish the
Riesz-Thorin inequality

||T ||Lrθ→Lpθ (X→Lqθ ) ≤ ||T ||1−θLr0→Lp0 (X→Lq0 )||T ||
θ
Lr1→Lp1 (X→Lq1 )

whenever θ ∈ [0, 1].

6.6 The mean ergodic theorem

Let us give an application of the above theory to ergodic theory.
Throughout we fix a measure-preserving system (Ω, P, T ). Recall that by definition this

consists of a probability space (Ω, P ) and a measure-preserving map T : Ω → Ω. The
measure-preserving system is ergodic if, for every event A, if T−1A ⊆ A, then A is either
almost surely true, or almost surely false.

Definition 6.6.1. The Koopman operator U acts on L2 by Uf = f ◦ T .

Recall that a linear operator L on an inner-product space is said to be an isometry if
〈Lf, Lg〉 = 〈f, g〉.

Lemma 6.6.2. If f ∈ L2 then
E(Uf) = Ef.

In particular, U is unitary.

Proof. This is obvious if f = 1A. We can extend to simple functions by taking linear
combinations, then use monotone convergence.
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Definition 6.6.3. The time average of f is

Anf =
1

n

n−1∑
j=0

U jf.

The space average of f is Ef .

The idea of time and space averages is as follows. Fix x, the state of the universe today.
Then T represents the passing of time from today to tomorrow. Every day, we measure the
random variable f , and their average after n days is Anf(x). Our goal will be to show that
Anf → Ef as long as (Ω, P, f) is ergodic, so in order to approximate the expected value of
f , we can just keep testing f every day over a long period of time and then take their mean.

To do this, we need two general facts about contractions on Hilbert spaces.

Lemma 6.6.4. Let H be a Hilbert space, U : H → H a bounded linear operator such that
||U || ≤ 1. If Ug = g then U∗g = g.

Proof. If Ug = g then

0 = ||U∗g − g||2 = ||U∗g||2 − ||g||2 ≤ ||Ug||2 − ||g||2 = 0

so the inequalities collapse and U∗g = g.

Lemma 6.6.5. Let H be a Hilbert space, U : H → H a bounded linear operator such that
||U || ≤ 1. Let V = {f ∈ H : Uf = f} and let Π : H → V be the orthogonal projection.
Then

lim
n→∞

1

n

n−1∑
j=0

U jf = Π(f). (6.17)

Proof. Consider the orthogonal decomposition

U = V ⊕ V ⊥.

We can break up into the cases f ∈ V and f ∈ V ⊥. If f ∈ V then obviously both sides of
(6.17) are f . If f ∈ V ⊥, Π(f) = 0. Also

|| 1
n

n−1∑
j=0

U jf || ≤ ||f ||

since U is unitary, so the map Snf = n−1
∑n−1

j=0 U
jf is bounded. Therefore

gn =
S∗nSnf

n2

is a bounded sequence. Since H has a weakstar compact unit ball (Exercise 6.4.16, though in
the applications we need this is just the Banach-Alaoglu theorem in L2), gn has a weakstar
limit g. Now

(1− U∗)(S∗n/n) =
1

n

n−1∑
j=0

(1− U∗)(U∗)j−1 =
1− (U∗)n

n
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satisfies
||(1− U∗)(S∗n/n)|| . n−1

so (1 − U∗)gn → 0 and hence (1 − U∗)g = 0. By the previous lemma, Ug = g. Therefore
f ⊥ g, so Π(f) = 0.

Theorem 6.6.6 (mean ergodic theorem). Let f ∈ L2 and let V = {g ∈ L2 : Ug = g}. Let
Π : L2 → V be the orthogonal projection. Then

lim
n→∞

Anf = Π(f)

in L2.

Proof. Expanding out the definitions of An and Π, we get (6.17).

This theorem is mainly interesting in the case that (Ω, P, T ) is an ergodic system. In
that case, the only random variables in V are constant almost surely, so Π(f) is a constant.
TODO: Conditional expectation arguement -¿ Π = E.
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Chapter 7

Harmonic analysis

We now sketch some of the applications of measure theory to harmonic analysis as an ex-
ample. It is reasonable to take the results that we are using, most notably Fubini’s theorem
and the Riesz-Markov representation theorem, as a black box and peruse this section before
we prove them, to get motivation for the utility of such results.

7.1 Haar measures

We begin by introducing measure theory on abelian groups. Recall that a group is called
abelian if its group operation is commutative. In that case we will usually write its operations
additively; that is, if G is an abelian group, we write g1 + g2 for the composition of g1 and
g2, we let −g denote the inverse of an element g, and let 0 denote the identity of G, so that
g − g = 0.

Definition 7.1.1. A locally compact abelian group G is an abelian group (G,+) equipped
with a topology, under which it is locally compact and Hausdorff, + is a continuous function
G×G→ G, and g 7→ −g is continuous.

We note that the finite product of locally compact abelian groups is a locally compact
abelian group. Thus Rd is a locally compact abelian group, as is the d-dimensional lattice
Zd, and the d-dimensional torus Td. In addition, any finite abelian group is a locally compact
abelian group for the discrete topology (wherein every set is open).

We may define, for any set A ⊆ G, its translate

A+ y = {x+ y ∈ G : x ∈ A}.

Definition 7.1.2. A Haar measure on G is a nonnegative Radon measure µ on G with the
following properties:

1. Translation invariance: For every Borel set B and every x ∈ G, µ(B + x) = µ(B).

2. Normalization: If G is compact, then µ(G) = 1.

If G is compact, we call µ a Haar probability measure.

131
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Let us give examples of Haar measure. First, Lebesgue measure is a Haar measure on R
and on T, and counting measure is a Haar measure on Z. On finite abelian groups G, we
define the uniform probability measure µ(A) = |A|/|G| where | · | denotes cardinality. The
uniform probability measure of a finite abelian group is Haar.

Recall that if G1, G2 are abelian groups, then one can form a group G1 ⊕G2, called the
direct sum of G1, G2, on the set G1 ×G2 by pointwise operations.

Lemma 7.1.3. The finite product of Haar measures is a Haar measure on the direct sum.

Proof. See Exercise 7.1.6.

Thus we have Haar measures on, for example, Td1 ×Zd2 . One can extend this to infinite
products, but the statement and proof become much trickier, for algebraic reasons (direct
sum and direct product no longer coincide), set-theoretic reasons (the Borel and Baire σ-
algebras no longer coincide, and one needs to use Tychonoff’s theorem to show that the
infinite product of compact spaces is compact), and topological reasons (the infinite product
of locally compact spaces is not locally compact). Since we will only ever need Haar measure
in finite dimensions, we dodge these issues by restricting to finite products.

We now show that every locally compact abelian group has an essentially unique Haar
measure.

Theorem 7.1.4. Let G be a locally compact abelian group. Then there is a Haar measure
µ on G. If G is compact, then µ is unique. Otherwise, if ν is another Haar measure, then
there is a c > 0 such that ν = cµ.

TODO: Prove Haar’s theorem using the Riesz-Markov theorem.
Henceforth if G is a group, we will omit reference to its Haar measure and Borel σ-algebra

whenever possible, writing dx instead of dµ(x) in integrals for example, and L1(G) to mean
L1(G, µ). Of course if G is not compact then one could always rescale its Haar measure, but
this is rarely important, so we might as well choose whatever normalization is convenient.

If G is compact, then since Haar measure is a probability measure, we can refer to the
expected value of a function f ∈ L1(G).

Definition 7.1.5. Let µ be a probability measure on a measurable space X, and f ∈
L1(X,µ). Define the expected value of f ,

Ef =

∫
X

f dµ.

In this case we may refer to f as a random variable drawn from X, and refer to µ(E) as the
probability of E whenever E ⊆ X is measurable.

Though we will not treat probability theory in detail, it will be at times convenient to
use the language of probability theory when thinking about compact abelian groups.

Exercise 7.1.6. Prove Lemma 7.1.3.

Exercise 7.1.7. Let µ be Lebesgue measure, and let ν be a Haar measure for the positive real
numbers under multiplication. Compute the Radon-Nikodym derivative of ν with respect to
µ.
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Exercise 7.1.8. Let G be a compact abelian group with Haar measure µ, E ⊆ G a Borel
set such that µ(E) > 0. Show that for every N ∈ N there are g1, . . . , gN ∈ G such that

µ

(
N⋃
n=1

gn + E

)
≥ 1− (1− µ(E))N .

(Hint: what is the expected value of µ
(⋃N

n=1 gn + E
)

?)

7.2 The Fourier transform

To motivate what follows, we first consider T and consider a smooth function f : T → C.
Such a function is in L∞ since T is compact, thus in L2 since T has finite measure. To ease
notation, we identify T with [0, 1) and f with a periodic function on [0, 1].

In applications, it is frequently useful to decompose f into a linear combination of waves,
namely

f(x) =
∞∑

ξ=−∞

f̂(ξ)e2πixξ. (7.1)

For example, if the function f̂ : Z → C has finite support, then f really is just a linear
combination of plane waves eξ(x) = e2πixξ, which are extremely easy to work with in calculus
since they are eigenfunctions of the derivative operator u 7→ u′. On the other hand, the waves
eξ are an orthonormal basis of L2(T); that is,

〈eξ, eη〉 =

∫
T
e2πix(ξ−η) dx = δηξ ,

so the representation (7.1) converges for the norm of L2(T), and f̂ exists and is unique for
any f ∈ L2(T). We can recover f̂ from f by taking the orthogonal projections

f̂(ξ) = 〈f, eξ〉 =

∫
T
f(x)e−2πixξ dx. (7.2)

Putting together (7.1) and (7.2), we obtain the Fourier inversion formula

f(x) =
∞∑

ξ=−∞

∫
T
f(y)e2πi(x−y) dy (7.3)

which is valid for any f ∈ L2(T). Though at first this just seems like a trick using the
structure of L2(T), it suggests some sort of “duality” between T and Z. Moreover, these
ideas work in much higher generality.

Recall that if G,H are abelian groups, a morphism ψ : G→ H is a map ψ such that for
any g1, g2 ∈ G,

ψ(g1 + g2) = ψ(g1) + ψ(g2). (7.4)
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By C∗ we mean the group of nonzero complex numbers under multiplication. Thus C∗ is
a locally compact abelian group. We will write the group operation of C∗ multiplicatively,
even though C∗ is abelian. Thus morphisms into C∗ satisfy the relation

ψ(g1 + g2) = ψ(g1)ψ(g2)

rather than (7.4). We let U(1) denote the subgroup of C∗ consisting of numbers of absolute
value 1; so U(1) is isomorphic to T, but is written multiplicatively rather than additively.

Definition 7.2.1. Let G be a locally compact abelian group. By a character of G we mean
a continuous morphism G→ U(1).

If ξ1, ξ2 are characters on a locally compact abelian group G, we define their sum

(ξ1 + ξ2)(g) = ξ1(g)ξ2(g).

It is straightforward to check that ξ1+ξ2 is a character on G, and that + defines the operation
of an abelian group Ĝ.

We want to be able to do measure theory on Ĝ, so we need to turn it into a locally
compact abelian group. We recall that a sequence of continuous functions fn is said to
converge uniformly provided that fn converges in L∞.

Definition 7.2.2. Let ψn be a sequence of characters of a locally compact abelian group G.
We say that ψn converges locally uniformly to a character ψ if for every compact set K ⊆ G,
the restrictions ψn|K converge to ψ|K uniformly on K.

We now give Ĝ a suitable topology, by declaring that ψn → ψ in the topology of Ĝ iff
ψn → ψ locally uniformly.

Definition 7.2.3. Let G be a locally compact abelian group. The Pontryagin dual Ĝ of G
is the locally compact abelian group of characters of G under addition and locally uniform
convergence.

Later we will prove that
̂̂
G = G. First, let us compute the Pontryagin duals of some

familiar groups.

Example 7.2.4. Let G be a finite abelian group. We claim that G is isomorphic to Ĝ. To
see this, we first appeal to the classification of finite abelian groups to write

G ∼=
Z
n1

⊕ · · · ⊕ Z
nk
.

Here Z/n denotes the cyclic group of order n. It is a straightforward exercise in group theory
to see that this implies that

Ĝ ∼=
Ẑ
n1

⊕ · · · ⊕ Ẑ
nk

(indeed, it follows from the universal property of ⊕), so it suffices to check the claim when
G = Z/n.
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Let g be the generator of Z/n and let kg = g + · · · + g (k copies of g). A character
ξ : Z/n → C∗ is determined by ξ(g), and 1 = ξ(ng) = ξ(g)n since Z/n is cyclic. Therefore
ξ(g) is an nth root of unity e2πi`/n. If ξj(g) = e2πi`j/n, then ξ1(g) + ξ2(g) = e2πi(`1+`2)/n.
Since ξ 7→ ξ(g) is an injective function between two sets of the same cardinality, it is a

bijection. The map ξ 7→ ξ(g) therefore gives an isomorphism between Ẑ/n and the group of
nth roots of unity of C∗ under multiplication, the latter of which is isomorphic to Z/n since
it is generated by e2πi/n and has n elements.

Example 7.2.5. TODO: Duality of T and Z.

We leave the following important duality result to the reader.

Theorem 7.2.6. The map η : R→ R̂ defined by η(ξ)(x) = e2πixξ is an isomorphism.

Motivated by the duality of T and Z, we now define the Fourier transform, a generalization
of the Fourier series to arbitrary locally compact abelian groups.

Definition 7.2.7. Let G be a locally compact abelian group, and f ∈ ISF(G). The Fourier
transform f̂ of f is defined by

f̂(ξ) =

∫
G

f(x)ξ(−x) dx.

We extend the Fourier transform to all of L2(G) by density.

It is not obvious that the above definition makes sense. Certainly if f ∈ ISF(G) then the
definition of f̂ is uncontroversial, but why does it extend to L2(G)? This happens because
of the following theorem:

Theorem 7.2.8 (Plancherel). TODO:https://www.math.ucla.edu/ tao/247b.1.07w/notes9.pdf
need to prove Fourier inversion first

7.3 Pontryagin duality

7.4 The Fourier transform on Rd

blah blah

Exercise 7.4.1. If µ is a Borel probability measure on R, we can define its Fourier transform
by

µ̂(ξ) =

∫ ∞
−∞

e−ixξ dµ(x).

Assume that µ is absolutely continuous, and its Radon-Nikodym derivative with respect to
Lebesgue measure is denoted µ′. Show that

µ′(x) =
1

2π

∫ ∞
−∞

eixξµ̂(ξ) dξ.
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(Hint: Let ϕ be a suitably chosen Schwartz function and let F (x) = µ((−∞, x]) be the
cumulative distribution function of µ. Show that

F (x) = lim
ε→0

1

2π

∫ x

−∞

∫ ∞
−∞

eiyξϕ(ε2ξ2)µ̂(ξ) dξ dy

and commute the limit with the iterated integral.) Conclude that you have given an alter-
native proof of the Radon-Nikodym theorem for Lebesgue measure.

Exercise 7.4.2 (Hausdorff-Young inequality). Show that if p∗ is the Hölder dual to p and
p ∈ [1, 2] then for every Schwartz function f ,

||f̂ ||Lp∗ (Rd) ≤ ||f ||Lp(Rd),

so the Fourier transform can be extended to a linear map Lp(Rd)→ Lp
∗
(Rd).

Exercise 7.4.3 (restriction estimates). Suppose that p ∈ [1, 2] and q ∈ [1,∞]. Let σ denote
Lebesgue measure on the unit sphere Sd−1 (defined in Exercise 2.3.10). Suppose that, for
every Schwartz function f , the restriction estimate

||f̂ ||Lq(Sd−1,σ) . ||f ||Lp(Rd)

holds. Show that for every f ∈ Lp(Rd), the restriction f̂ |Sd−1 is defined for σ-almost every
point of Sd−1. Restriction estimates are an active area of research in harmonic analysis; the
above restriction estimate is valid whenever p = 2 and q ∈ [1, 4d/(3d+ 1)].

Exercise 7.4.4. Let s ∈ R. Define the Sobolev measure µs so that its Radon-Nikodym
derivative with respect to Lebesgue measure is (1 + |ξ|s)2. Show that for any s ∈ N and
u ∈ Hs(Rd) one has

||u||Hs . ||u||L2(µs) . ||u||Hs .

So we define the Sobolev norm Hs, s any real number, by setting ||u||Hs = ||u||L2(µs). This
allows us to define the Sobolev space Hs in general.

Exercise 7.4.5. This Exercise should be done after Exercise 7.4.4. Let s ∈ R. Show that
there is an isomorphism (Hs)∗ → H−s — so while we can think of Hs as its own dual (since
Hs is a Hilbert space), we can also think of H−s and Hs as dual spaces.

Exercise 7.4.6. Let a : R2 → C be a smooth function such that a ∈ L∞ and all partial
derivatives of a are in L∞. Define the pseudodifferential operator

Af(x) =

∫ ∞
−∞

a(x, ξ)f̂(ξ)eixξ dξ.

We call A the Kohn-Nirenberg quantization of a, and a the symbol of A. Show that Af
exists whenever f ∈ S (R) and A maps S (R) to itself. Show that the Kohn-Nirenberg
quantization a(x, ξ) = x satisfies Af(x) = xf(x), and the Kohn-Nirenberg quantization of
a(x, ξ) = ξ satisfies Af = f ′, up to a multiplicative constant.
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7.5 Applications to quantum mechanics

The following three sections are independent of each other. We include this section first
because it is arguably the easiest of the three. Here we prove the uncertainty principle of
Heisenberg, which says that one cannot know both the position and the momentum of a
subatomic particle.

In quantum mechanics, one typically models a particle P with one degree of freedom
by a Schwartz function f , its wavefunction, such that ||f ||L2 = 1. If A ⊆ R is Borel, the
probability of measuring that P is inside A is ||f ||L2(A). Moreover, the momentum of P also

has a wavefunction, given by f̂ ; the probability of measure that the momentum of P is inside
A is ||f̂ ||L2(A).

We now introduce the position operator Xf(x) = xfx and momentum operator Df(x) =
f ′(x)/2πi. By Lemma TODO, D is the conjugation of X by the Fourier transform, as one
might expect. Notice that X,D both preserve Schwartz space.

Now if we have two operators A,B on Schwartz space, we can introduce their commutator
[A,B] = AB−BA. The commutator measures how badly A,B fail to commute. In the case
of position and momentum, the answer is “quite badly”.

Theorem 7.5.1 (von Neumann’s canonical commutation relations). One has

[X,D] = − 1

2πi
.

This can be easily verified by the reader using the product rule for differentiation.

We now recall that the expected value of a random variable is its mean value. We leave it
as an exercise to check that the expected value of the position of a particle with wavefunction
f is ∫ ∞

−∞
x|f(x)|2 dx.

Similarly, ∫ ∞
−∞

ξ|f̂(ξ)|2 dξ

is the expected value of the momentum. In statistics, one defines the variance of a random
variable A to be the difference between the expected value of A2 and the expected value of
A, squared. This is a measure of how far a “typical” measurement will deviate from the
expected value. TODO: Move to probability ch?

TODO: Heisenberg

7.6 Applications to PDE

TODO: Elliptic equation have solutions
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7.7 Applications to number theory

In this section we use the theory that we have developed thus far to prove the famous func-
tional equation for the Riemann zeta function. The proof technique is of great importance
to number theory, where it leads one into the theory of modular forms, L-functions, the
Langlands program, and Tate’s thesis. However, the author confesses complete ignorance of
such matters, and refers the brave reader to TODO:Cite.

We start by recalling the basic definitions from number theory.

Definition 7.7.1. The Riemann zeta function is the function

ζ(s) =
∞∑
n=1

n−s,

defined when Re s > 1.

Then ζ is holomorphic in the half-plane Ω = {s ∈ C : Re s > 1}. Indeed, the summands
n−s are holomorphic in s and the partial sums converge locally uniformly in Ω (that is,
converge in L∞(K) for any compact K ⊂ Ω), and the locally uniform limit of holomorphic
functions is holomorphic (TODO:Cite a complex analysis book). This function is interesting
to number theorists because of the following theorem.

Theorem 7.7.2 (Euler’s product formula). For every s ∈ Ω,

ζ(s) =
∏
p

1

1− p−s
,

where the product ranges over all prime numbers p.

Proof. We induct on the primes. First,

1

2s
ζ(s) =

∑
n≡0 mod 2

n−s

so

ζ(s)

(
1− 1

2s

)
=

∑
n6≡0 mod 2

n−s.

Now suppose that q is a prime and

ζ(s)
∏
p

1− 1

ps
=
∑
n

n−s (7.5)

where the product is taken over all primes p < q, and the sum is taken over all n such that
for each prime p < q, n 6≡ 0 mod p. Then

1

qs
ζ(s)

∏
p

1− 1

ps
=
∑
n

n−s
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where the product is again taken over all primes p < q and the sum is taken over all n such
that n ≡ 0 mod q and for each prime p < q, n 6≡ 0 mod p. Therefore (7.5) holds when the
product is taken over all primes p ≤ q and the sum is taken over all n such that for every
p ≤ q, n 6≡ 0 mod p. This completes the induction. Taking q →∞ in (7.5) we see that

ζ(s)
∏
p

1− 1

ps
= 1

where the product is taken over all primes p and the infinite product converges by a monotone
convergence argument (since

∑
n n
−s, the sum taken over all natural numbers n, converges).

Indeed, 1 6≡ 0 mod p for any prime p, but any n ≥ 2 eventually divides some prime. The
claim now follows.

Now recall that the gamma function is the function

Γ(z) =

∫ ∞
0

xz−1e−x dx

which converges if Re z > 0.

Definition 7.7.3. Define the Riemann xi function

ξ(s) = π−s/2Γ(s/2)ζ(s).

Theorem 7.7.4 (Riemann’s functional equation). For any s ∈ Ω,

ξ(s) = ξ(1− s). (7.6)

Therefore ξ(s), and hence ζ(s), can be defined for any s 6= 1, and ζ extends to a holomorphic
function on C \ {1}.

Riemann’s functional equation was first conjectured by Euler, and is one of the corner-
stones of number theory. One of the most fundamental open problems in mathematics is the
Riemann hypothesis , which asserts that if s is a zero of ζ with Re s ∈ [0, 1], then Re s = 1/2.
If the Riemann hypothesis were true, then it would give sharp bounds on the growth of the
prime-counting function.

We prove (7.6) later in this section; the holomorphy claim is easy to check for any student
of complex analysis once (7.6) is established. First we relate (7.6) to harmonic analysis.

We shall recall some algebraic machinery. The trivial group is denoted 0; for any group
G, there are unique morphisms 0 → G and G → 0, namely the trivial morphism, which we
leave nlabeled when clear from context. We let 0 denote the trivial morphism between any
two groups when we do need to specify it.

A short exact sequence of abelian groups is a commutative diagram

0 A B C 0α β

where A,B,C are abelian groups, all the arrows are morphisms, and the kernel of any arrow
is the image of the arrow before it. This is equivalent to requiring that α is injective, β is
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surjective, and the image of α is the kernel of β, thus for any b ∈ B, β(b) = 0 iff there is an
a ∈ A with b = α(a). Whenever B is a subgroup of A, we get a short exact sequence

0 B A A
B

0ι q
(7.7)

where ι is the inclusion map ι(b) = b and q is the quotient map.
If α : A→ B is a continuous morphism between locally compact abelian groups, then we

can define its Pontraygin dual α̂ : B̂ → Â by

α̂(ξ) = ξ ◦ α.

Note that this is not the same as taking the Fourier transform of α; we will always use
Roman letters for functions and Greek letters for morphisms, to avoid confusion. If B ⊆ A,
and ι : B → A is the inclusion morphism ι(b) = b, then ι̂(ξ) = ξ ◦ ι = ξ|B, thus ι̂ is the
restriction map Â→ B̂.

Theorem 7.7.5. Pontraygin duality is exact in the sense that whenever one has a diagram
of locally compact abelian groups and continuous morphisms between them

A B Cα β

such that the image of α is the kernel of β, then the image of β̂ is the kernel of α̂.

Proof. Let H = β̂(Ĉ). Then β̂ ◦ α̂ = β̂ ◦ α = 0̂ = 0. Therefore H ⊆ ker α̂. Applying the

Pontraygin duality theorem, we see that if H ⊂ ker α̂ then k̂er α̂ = α(A) is a proper subgroup
of Ĥ = ker β, which is impossible.

Corollary 7.7.6. Let A be a locally compact abelian group, B a closed subgroup of A.
Then the Pontraygin dual of (7.7),

0 Â
B

Â B̂ 0,
q̂ ι̂

is a short exact sequence of locally compact abelian groups.

Proof. This immediately follows from Theorem (7.7.5). The reader can check that since B
is closed, all the morphisms are continuous and A/B is a locally compact abelian group.

Theorem 7.7.7 (Poisson summation). Let B be a closed subgroup of a locally compact
abelian group A. If f ∈ L1(A) let

fB(x+B) =

∫
B

f(x+ y) dy.

Then for any ξ ∈ Â/B, f̂B(ξ) = f̂([ξ]) where [ξ](x) = ξ(x+B) for any x ∈ A.

If fB ∈ L1(Â/B), then for almost all x ∈ G∫
B

f(x+ y) dy =

∫
Â/B

f̂([ξ])[ξ](x) dξ. (7.8)

If fB is continuous and everywhere defined, then (7.8) is valid for every x ∈ G.
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Proof. If ξ ∈ Â/B then ξ|B = 0. Indeed, ξ|B = ι̂(ξ) = ι̂(q̂(B)) = 0, by Corollary 7.7.6.
Therefore ξ(x+ y) = ξ(x) for any (x, y) ∈ A×B. So

f̂B(ξ) =

∫
A/B

fB(x+B)ξ(x) d(x+B)

=

∫∫
A/B×B

f(x+ y)ξ(x+ y) dy d(x+B)

=

∫
A

f(x)[ξ](x) +B dx = f̂([ξ]).

Now if fB ∈ L1(Â/B), then by the Fourier inversion formula,

fB(x+B) =
̂̂
f |Â/B(−x+B) =

∫
Â/B

f̂([ξ])[ξ](x) dξ

almost everywhere, and everywhere under the necessary hypotheses. Substituting the defi-
nition of fB in the above equation we obtain (7.8)

Corollary 7.7.8 (Poisson summation on R). Let f be a Schwartz function on R. Then for
every x ∈ R,

∞∑
k=−∞

f(x+ k) =
∞∑

ξ=−∞

f̂(ξ)e−2πixξ. (7.9)

Proof. Plugging R and Z into (7.7) we obtain a short exact sequence

0 Z R T 0.

Dualizing, we obtain a bijection Z → T̂ = Z. Since f is Schwartz, f ∈ L1(R) and f̂ is
Schwartz, so that f̂ |Z ∈ L1(Z). Then plugging in f into (7.8) we obtain (7.9).

Corollary 7.7.9. Let f be a Schwartz function on R. Then

∞∑
k=−∞

f(k) =
∞∑

ξ=−∞

f̂(ξ). (7.10)

Definition 7.7.10. Define, for Re z > 0,

Θ(z) =
∞∑

k=−∞

e−zπk
2

,

the Jacobi theta function of one variable.

Lemma 7.7.11. For every Re z > 0,

√
zΘ(z) = Θ(z−1).
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Proof. By uniqueness of analytic continuation, a theorem of complex analysis, it suffices to
check when Im z = 0. Let fz(x) = e−zπx

2
. Then f̂1 = f1 by Lemma TODO, so by Lemma

TODO, √
zf̂z = f1/z.

Moreover, fz is Schwartz, so the claim now follows by applying (7.10).

Proof of (7.6). Note that dt/t is the Haar measure of R+, the positive real numbers under
multiplication. One has

ξ(s) =
∞∑
n=1

∫ ∞
0

n−sts/2π−s/2e−t
dt

t
=
∞∑
n=1

∫ ∞
0

(
t

n2π

)s/2
e−t

dt

t
.

Simplifying, we see that

ξ(s) =

∫ ∞
0

ts/2
Θ(t)− 1

2

dt

t
=

[∫ 1

0

+

∫ ∞
1

]
ts/2

Θ(t)− 1

2

dt

t
.

Now Θ− 1 is Schwartz, so the integral over [1,∞] converges locally uniformly in s, hence to
an entire function in s. Applying the transform t 7→ 1/t, which preserves the Haar measure
of R+, and using Lemma 7.7.11,∫ 1

0

ts/2
Θ(t)− 1

2

dt

t
=

∫ ∞
1

t−s/2
√
tΘ(t)− 1

2

dt

t

thus

ξ(s) =

∫ ∞
1

ts/2
Θ(t)− 1

2

dt

t
+

∫ ∞
1

t(1−s)/2
Θ(t)− 1

2

dt

t
+

1

2

[∫ ∞
1

t(1−s)/2
dt

t
−
∫ ∞

1

t−s/2
dt

t

]
.

But

−1

2

[∫ ∞
1

t(1−s)/2
dt

t
−
∫ ∞

1

t−s/2
dt

t

]
=

1

s
+

1

1− s
.

Therefore

ξ(s) =

∫ ∞
1

ts/2 + t(1−s)/2
Θ(t)− 1

2

dt

t
−
(

1

s
+

1

1− s

)
. (7.11)

The right-hand side of (7.11) does not change when one replaces s with 1 − s, thus ξ(s) =
ξ(1− s).



Appendix A

Linear algebra

A.1 Normed spaces

The reader should be familiar with this material before reading Chapter 1.
When one first learns what a “vector” is, they are told that a vector is comprised of a

length and a direction. However, the algebraic definition of a vector space does not satisfy
this property; nothing in the definition of a vector space allows one to canonically assign
lengths to vectors. In this section we correct this matter by introducing a notion of length.

We take all vector spaces to be over the real numbers R or the complex numbers C
(preferably the latter). We let [0,∞) denote the nonnegative real numbers.

Definition A.1.1. A seminormed space is a vector space V equipped with a function

V → [0,∞)

v 7→ ||v||,

known as a seminorm, such that for any v, w ∈ V and c a scalar,

||v + w|| ≤ ||v||+ ||w||,

the triangle inequality , and
||cv|| = |c| · ||v||.

The quantity ||v|| is called the length of v.
A normed space is a seminormed space V such that the only v ∈ V such that ||v|| = 0 is

v = 0. A seminorm with this property is called a norm.

Example A.1.2. Every vector space can be turned into a seminormed space in a trivial
way, namely by setting ||v|| = 0 for every v. However, we will have no use for this.

Example A.1.3. The most important example of a normed space has as its base space Rd.
We define

||(x1, . . . , xd)||22 =
d∑
i=1

|xi|2,

thus ||·||2 is the Euclidean norm on Rd. Then the triangle inequality is just the usual triangle
inequality for Euclidean geometry.

143
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Example A.1.4. We can define several other norms on Rd, closely related to the Euclidean
norm || · ||2. First we let

||(x1, . . . , xd)||∞ =
d

max
i=1
|xi|.

We then define, for any p ∈ [1,∞),

||(x1, . . . , xd)||pp =
d∑
i=1

|xi|p.

Thus when p = 2 we recover the Euclidean norm, when p = 1 we recover the “sum norm”
||(x1, . . . , xd)||1 =

∑
i |xi|, and in the limit p→∞ we obtain the || · ||∞ norm.

A.1.5. A normed space is a metric space in a natural way, namely the distance between two
vectors v, w is defined to be ||v−w||. Thus we have access to the usual notion of sequences,
convergence, etc. for normed spaces; so the equation

lim
n→∞

vn = w

means that for every ε > 0 there is an N such that for every n ≥ N , ||vn−w|| < ε. Similarly
a sequence of vn is Cauchy if for every ε > 0 there is an N such that for every n, n′ ≥ N ,
||vn, vn′ || < ε.

A.1.6. The notion of convergence makes sense in seminormed spaces, but it is no longer true
that the limit of a sequence need be unique. In fact, consider the seminorm on R2 defined
by

||(x, y)|| = |x|.

Let (xn, yn)n be a sequence in R2 and x ∈ R. Then for every limn xn = x, then for every
y ∈ R, limn(xn, yn) = (x, y). In the language of point-set topology, seminormed spaces are
not Hausdorff (nor do they even satisfy Axiom T0). We fix the lack of Hausdorffness by
observing that it is always possible to turn a seminormed space into a normed space.

Theorem A.1.7. For every seminormed space V there is a normed space V ′, called the
normalization of V , such that:

1. There is a surjective linear map π : V → V ′.

2. For every normed space W and every linear map T : V → W such that for every v,
||Tv|| = ||v||, there is a linear map T ′ : V/ kerV → W such that ||T ′v|| = ||v|| and the
diagram

V W

V
kerV

T

π T ′ (A.1)

commutes.
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A.1.8. In the language of category theory, the diagram (A.1) is called the universal property
of the normalization. In category theory one proves that whenever an algebraic object
satisfies a universal property, the object is unique up to a unique choice of isomorphism. Thus
the normalization (and the closely related completion that we discuss in Theorem A.2.7) is
unique.

Proof of Theorem A.1.7 (omit on first reading). In fact, we define the kernel of a seminormed
space V by kerV = {v ∈ V : ||v|| = 0}. The kernel is a subspace of V , so we can take the
quotient space V/ kerV and form a short exact sequence

0 kerV V V
kerV

0π (A.2)

(so the composite of any two arrows in the diagram (A.2) is the zero map, π is the natural
projection of V onto V/ kerV , and kerV is the kernel of π). We define a norm on V/ kerV
by

||π(v)|| = ||v||.

We define the normalization of V to be V/ kerV .
To check the universal property, let T : V → W be a linear map into a normed space

W such that ||Tv|| = ||v||. In particular, if v ∈ kerV , ||Tv|| = 0 so Tv = 0 and hence
v ∈ kerT . Thus we may define T ′(π(v)) = Tv; this is well-defined because if π(v) = π(v′),
then v − v′ ∈ kerV and hence in kerT .

Lemma A.1.9 (reverse triangle inequality). For every v, w in a normed space,

|||v|| − ||w||| ≤ ||v − w||.

Proof. One has
||v|| = ||v + w − w|| ≤ ||v − w||+ ||w||

so
||v|| − ||w|| ≤ ||v − w||.

Similarly,
||w|| − ||v|| ≤ ||v − w||.

But max(||v|| − ||w||, ||w|| − ||v||) = |||v|| − ||w|||.

A.2 Banach spaces

The defining property of R is that every Cauchy sequence in R converges. However, this
property is not true for normed spaces, as the following example will show.

Example A.2.1. Let C[0, 1] denote the vector space of continuous functions [0, 1]→ C. We
turn C[0, 1] into a normed space by introducing a Euclidean-type norm,

||f ||22 =

∫ 1

0

|f(x)|2 dx.
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It is easy to check that ||f ||2 is a seminorm, and to see that it is a norm, note that if∫ 1

0
|g| = 0, then for every ε > 0 there is a partition of [0, 1] into intervals I1, . . . , In such that

for every i, the length of Ii is < ε and the midpoint I∗i of Ii satisfies |g(I∗i )| < ε. Thus the set
of points x such that |g(x)| < ε is ε-dense (i.e. for every y there is an x such that |x− y| < ε
and |g(x)| < ε). Taking ε → 0 we see that the set of points x such that g(x) = 0 is dense
(i.e. for every δ > 0 and every y we can find an x with |x − y| < δ and g(y) = 0). But g is
continuous so g = 0.

Now define

fn(x) =


0, x ≤ 1/2− 1/n

n(x− 1/2− 1/n), 1/2− 1/n ≤ x ≤ 1/2 + 1/n

2, x ≥ 1/2 + 1/n

.

TODO: Draw a picture To see that (fn)n is Cauchy, note that if m > n then

||fn − fm||22 =

∫ 1/2+1/n

1/2−1/n

(m(x− 1/2− 1/m)− n(x− 1/2− 1/n))2 dx

and the integrand satisfies

(m(x− 1/2− 1/m)− n(x− 1/2− 1/n))2 ≤ 8.

Thus

||fn − fm||22 ≤
∫ 1/2+1/n

1/2−1/n

8 dx =
16

n
.

Therefore

||fn − fm||2 ≤
4√
n
→ 0

as n→∞. However, it is not too hard to check that if

f(x) =

{
0, x ≤ 1/2

1, x > 1/2

then

lim
n→∞

||fn − f ||2 = 0;

yet f is not continuous, and || · ||2 is a norm, so fn cannot converge to any continuous
function.

Definition A.2.2. A Banach space is a normed space for which every Cauchy sequence
converges.

Example A.2.3. The p-norms || · ||p that we defined on Rd turn Rd into a Banach space.
This is an exercise in the fact that every Cauchy sequence on R converges.
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A.2.4. The advantage of working in Banach spaces rather than general normed spaces is
that it is meaningful to talk about infinite sums in Banach spaces. Indeed, if (xn)n is a
sequence of elements in a Banach space X, we define

∞∑
n=1

xn = lim
N→∞

N∑
n=1

xn (A.3)

whenever the limit on the right-hand side of (A.3) makes sense; thus, y =
∑

n xn if for every
ε > 0, there is an N such that ∣∣∣∣∣

∣∣∣∣∣y −
N∑
n=1

xn

∣∣∣∣∣
∣∣∣∣∣ < ε.

In fact, the right-hand side of (A.3) makes sense as long as the partial sums are Cauchy;
thus, for every ε > 0, there is an N such that∣∣∣∣∣

∣∣∣∣∣
∞∑
n=N

xn

∣∣∣∣∣
∣∣∣∣∣ < ε.

By the triangle inequality, it in fact suffices to show that for every ε > 0 there is an N such
that

∞∑
n=N

||xn|| < ε (A.4)

to show that the (xn)n are summable.

Definition A.2.5. Let (xn)n be a sequence in a Banach space. If for every ε > 0 there is an
N such that (A.4) holds, we say that (xn)n is absolutely convergent or absolutely summable.

A.2.6. Just as we had a universal way to turn any seminormed space into a normed space,
its normalization, we have a universal way to turn any normed space (hence any seminormed
space) into a Banach space by adding limits to each of its Cauchy sequences.

Theorem A.2.7. For every normed space V there is a Banach space W , called the comple-
tion of V , such that:

1. There is an injective linear map ι : V → W such that for every v, ||ι(v)|| = ||v||.

2. The image of ι is dense in W .

3. The completion satisfies the universal property of the completion: for any Banach space
X and any linear map T : V → X such that for every v, ||Tv|| = ||v||, then there is a
linear map T ′ : W → X such that the diagram

V X

W

T

ι T ′

commutes.
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Proof (omit on first reading). To do this, let V be a normed space and let Cau(V ) be the
vector space of all Cauchy sequences in V . (We let x denote a Cauchy sequence (xn)n.) Then
Cau(V ) is a seminormed space, where

||x|| = lim
n→∞

||xn||.

(To see that the limit exists, note that if x is a Cauchy sequence then n 7→ ||xn|| is a Cauchy
sequence in R, so it converges.) Let W be the normalization of Cau(V ) and π : Cau(V )→
W the natural projection.

We claim that W is the completion of V . First, W is a Banach space, because if x ∈
Cau(W ), then we can choose x̃ ∈ Cau(Cau(V )) such that for every n,

π(x̃n) = xn.

Now x̃n is a Cauchy sequence, say (x̃n,m)m. If we replace x̃n with a subsequence (in m) of
x̃n, π(x̃n) will not change. Thus we might as well assume that for any two m,m′,

||x̃n,m − x̃n,m′ || <
1

n
.

Now let
ỹn = x̃n,n.

We want xn → π(ỹ) but it’s not obvious that ỹ is a Cauchy sequence.
Let ε > 0, so there is an N > ε−1 such that for every n, n′ ≥ N ,

||xn − xn′|| < ε

and for any j,

||ỹn − ỹn′ || = ||x̃n,n − x̃n′,n′||
≤ ||x̃n,n − x̃n,j||+ ||x̃n,j − x̃n′,j||+ ||x̃n′,j − x̃n′,n′||

≤ 1

n
+ ||x̃n,j − x̃n′,j||+

1

n′

< 2ε+ ||x̃n,j − x̃n′,j||.

But
lim
j→∞
||x̃n,j − x̃n′,j|| = 0

and since j was large enough we can take ||x̃n,j − x̃n′,j|| < ε. Then

||ỹn − ỹn′|| . ε.

Therefore ỹ ∈ Cau(V ), and we can define

y = π(ỹ).

We similarly choose N > ε−1 such that for every n, n′ ≥ N ,

||ỹn − ỹn′|| < ε.



A.3. LINEAR MAPS 149

Then

||x̃n′,n − ỹn|| ≤ ||x̃n′,n − x̃n′,n′ ||+ ||ỹn′ − ỹn|| . ε.

But

lim
m→∞

||x̃n,m − ỹm|| = ||xn − y||

so limn xn = y.
We can define

ι(v) 7→ π(v, v, v, . . . ). (A.5)

Clearly the limit of the Cauchy sequence on the right-hand side of (A.5) is v, so ||ι(v)|| = ||v||.
To see that ι(V ) is dense in W , let x ∈ W and choose x̃ ∈ Cau(V ) with π(x̃) = x. Now

x̃ is a Cauchy sequence in V , so let

yn = ι(x̃n);

then y ∈ Cau(W ), and the reader can check that limn yn = x.
To check the universal property, let T : V → X be a linear map of V into a Banach space

X such that ||Tv|| = ||v||. Thus T is a bounded linear map (c.f. Definition A.3.1). First
define T ′(ι(v)) = v for every v, thus T ′ is defined on the dense subspace V ′ of W . But then
T ′ is continuous, so it extends uniquely to a linear map by Lemma A.3.3. We leave it to the
reader to check ||T ′w|| = ||w||. Since the completion is defined by a universal property, it is
unique.

A.3 Linear maps

Definition A.3.1. Let T : V → W be a linear map between normed spaces. We say that
T is a bounded linear map if there is a C > 0 such that for every v ∈ V ,

||Tv|| ≤ C||v||.

The infima of all choices of C is called the operator norm of T , denoted ||T ||. We denote by
B(V → W ) the space of bounded linear maps.

Lemma A.3.2. Let V,W be normed spaces. Then the operator norm is a norm on B(V →
W ).

Proof. Routine and omitted.

Lemma A.3.3. Let T : V → W be a bounded linear map between normed spaces, and
suppose that V is a dense subspace of a normed space X. Then there is a unique extension
of T to a bounded linear map X → W , which has the same operator norm.

Proof. Let x ∈ X, and let (xn)n be a sequence in V with limn xn = x. Define Tx = limn Txn.
We let ||T ||V denote the operator norm of T with domain V and ||T ||X with domain X.

To see that this is well-defined, suppose that limn x
′
n = x as well. Then

lim
n→∞

||Txn − Tx′n|| ≤ lim
n→∞

||T ||V · ||xn − x′n|| = 0
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since xn → x and x′n → x. Thus Tx does not depend on the choice of Cauchy sequence
which approximates x. Similarly,

||Tx|| = lim
n→∞

||Txn|| ≤ lim
n→∞

||T ||V · ||xn|| = ||T ||V ||xn||.

Thus ||T ||X ≤ ||T ||V , but V is a subspace of X so clearly ||T ||V ≤ ||T ||X .
To check that T is linear on X, note that T is continuous and hence can be commuted

with limits. This means that

T (x+ y) = lim
n→∞

T (xn + yn) = lim
n→∞

Txn + Tyn = Tx+ Ty

where (xn)n and (yn)n are appropriately chosen Cauchy sequences. The proof that T (cx) =
cTx is similar.

A.4 Separability

Definition A.4.1. Let B be a Banach space and let X ⊆ B. We say that X is separable if
there is a countable dense subset of X.

A.4.2. If X is separable and Y ⊆ X, then Y is separable; in fact, if C is countable and
dense in X, then C ∩ Y is countable and dense in Y .

Example A.4.3. Cn is separable, since {(α1 + iβ1, . . . , αn + iβn) : αi, βi ∈ Q} is countable
and dense in Cn. In particular any finite-dimensional space is separable. Moreover, most
spaces that we consider will turn out to be separable.

Example A.4.4. Let X be the space of all bounded functions C→ C, where

||f − g|| = sup
z∈C
|f(z)− g(z)|.

Then X is not separable. In fact, if z ∈ C, let 1z(z) = 1 and 1z(w) = 0 if w 6= z. Then
Y = {1z : z ∈ C} is an uncountable subset of X such that for every z1 6= z2, ||1z1 − 1z2|| = 1.
So Y is discrete and uncountable, and hence cannot be separable.

A.5 Convexity

A.5.1. If x, y are elements of a Banach space, we denote by [x, y] the closed line segment
between x, y — that is, the set of all z which can be written

z = tx+ (1− t)y (A.6)

with t ∈ [0, 1]. We let (x, y) denote the open line segment between x, y — that is, the set of
all z satisfying (A.6) wiht t ∈ (0, 1).

Definition A.5.2. Let B be a Banach space and K ⊆ B. We say that K is a convex set if
for every x, y ∈ K, [x, y] ⊆ K.
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A.5.3. It is straightforward to check that balls are convex, as are subspaces.

TODO: Hanh-Banach theorem

Definition A.5.4. Let K be a convex set. A face of K is a nonempty closed convex set F
such that for every x, y ∈ K such that (x, y) ⊆ F , x, y ∈ F . A vertex or extreme point of K
is a face which consists of a single point.

Example A.5.5. Let K be a cube. Then K is convex, and so is a face. The boundary of
K is made up of squares, which are also faces of K (as well as faces in the sense of euclidean
geometry!), and are also convex. The boundary of each square is a line segment, which is a
face of the square and hence of K. The boundary of each line segment is a vertex (of the line
segment, the square, and K itself), and are also vertices in the sense of euclidean geometry.

A.5.6. We are going to show that every compact convex set is generated by its vertices.
To do this, we first need to show that every compact convex set has a vertex. (This is not
quite obvious, since an open ball is a convex set with no vertex.) The proof of this fact is
motivated by Example A.5.5, since we expect that vertices should be minimal faces.

Lemma A.5.7. Let K be a compact convex set. Then K has a vertex.

Proof. Let P be the set of faces of K, ordered by inclusion. Then K ∈ P, and if F ⊆ P is a
chain, then

⋂
F is a nonempty compact convex subset of K, which is clearly a face. Thus P

satisfies the hypotheses of Zorn’s lemma with order reversed, and so has a minimal element
V .

We claim that V is a vertex. If not, then V has at least two points, so by the Hanh-
Banach theorem there is a bounded real linear functional λ which is not constant on V .
Since λ is real and continuous and V is convex (thus connected) and compact, there are real
numbers α ≤ β with λ(V ) = [α, β]. Then λ−1(β) ∩ V is nonempty, compact, and convex,
and can be easily seen to be a face. But λ−1(β) ∩ V is a proper subset of V if α < β,
contradicting minimality.

Definition A.5.8. Let X be a set of points in B. The convex hull chX of X is the
intersection of all closed convex sets containing X.

A.5.9. Since the intersection of closed convex sets is closed and convex, the convex hull of
any set is closed and convex. That is, chX is the smallest closed convex set containing X.

Theorem A.5.10 (Krein-Milman). Let K be compact convex set. Then K is the convex
hull of the vertices of K.

Proof. Let S be the set of vertices of K. Then chS ⊆ K is a compact convex set. Suppose
that x ∈ K \ chS. By the Hanh-Banach theorem, there is a bounded real linear functional
λ such that λ(x) /∈ λ(chS); we may assume λ(x) > λ(chS). Let β = maxλ(K), so
β ≥ λ(x) > λ(chS). Then λ−1(β) is a hyperplane, and the intersection of a hyperplane
with a compact convex set is either empty or compact and convex. Since λ−1(β) ∩ K is
nonempty, λ−1(β) ∩ K is a compact convex set. By Lemma A.5.7, there is a vertex v of
λ−1(β) ∩K; it is easy to see that v is also a vertex of K. But λ(v) = β > λ(chS) so v /∈ S,
a contradiction.
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Appendix B

Foundations

In this appendix we treat the foundations of math: set theory, category thoery, and point-
set topology. We omit the proofs, not because they are uninteresting or unworthy of being
learned, but because these topics are not analysis; this is an analysis book, and it is reasonable
to use material that is not analysis as a black box.

B.1 Axiomatic set theory

We assume familiarity with naive set theory; this will suffice for everything in this text except
for a few examples, which require more sophisticated set-theoretic techniques that we record
here. We refer the reader to Kunen [Kun11] for more details.

B.1.1. Let us record the first few axioms of set theory. It will be convenient to assume that
every mathematical object is a set. This is no loss of generality, because one can define the
natural numbers by declaring that 0 = ∅ and for every natural number n, n = {0, . . . , n−1}.
The definition of real numbers in terms of Dedekind cuts, where each real number x is by
definition the set {y ∈ Q : y < x}, is similar. More generally, any mathematical object
can be encoded as a set in some appropriate way. The first three axioms are presumably
uncontroversial to anyone who has studied naive set theory.

Axiom B.1.2 (extensionality). For all sets x, y, z, if z ∈ x implies z ∈ y, and z ∈ y implies
z ∈ x, then x = y.

Axiom B.1.3 (pairing). For all sets x, y, there exists a set z, usually denoted {x, y}, such
that for every set w, w ∈ z iff w = x or w = y.

Axiom B.1.4 (union). For all sets x, y, there exists a set z, usually denoted x∪y, such that
for every set w, w ∈ z iff w ∈ x or w ∈ y.

B.1.5. Now to avoid Russell’s paradox and other technicalities we want to forbid that a set
include itself.

Axiom B.1.6 (foundation). For all sets x such that there is a set w ∈ x, there is a set y ∈ x
such that for all sets z ∈ y, z /∈ x.

153
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B.1.7. If x ∈ x, then by pairing, {x} is a set, and this contradicts foundation.

B.1.8. A first-order formula with N free variables in the language of set theory is a string
consisting only of the symbols ∃,∀,→,¬,∈, (, ), and variables x1, x2, . . . , y1, . . . , yN that refer
to sets, which is meaningful (so the formula )∀ =⇒ () is not a first-order formula), such that
the xi always appear after a quantifier ∀ or ∃, and the yi never do. Plugging in sets for the
yi gives a statement which is either true or false. For example, ∀x1((x1 ∈ y1) → (x1 ∈ y2))
is a formula which asserts that y1 ⊆ y2.

B.1.9. First-order formulae allow us to assert the existence of subsets.

Axiom B.1.10 (restricted comprehension schema). For all sets x, first order-formulae ϕ
with N + 1 free variables, and sets w1, . . . , wN , there is a set y such that z ∈ y iff z ∈ x and
ϕ(z, w1, . . . , wN) is true.

B.1.11. Henceforth we adopt the usual notation ⊆, ⊂, {y ∈ x : ϕ(y)}, etc. We can also
now define the empty set ∅ and various other interesting sets.

B.1.12. Already we have developed enough to study finite sets. For example, we can define
intersection ∩ and ordered pairs (x, y) in terms of the notions we introduced in the above
axioms. We can also define functions; a function f : X → Y is just a set f of ordered pairs
(x, y) such that for every x ∈ X there is exactly one y ∈ Y such that (x, y) ∈ f (though we
usually write f(x) = y to mean (x, y) ∈ f). So we can talk about injections and bijections,
and ask if two sets have the same cardinality.

Definition B.1.13. Let x, y be sets. We say that x, y have the same cardinality , and write
x ∼= y, if there is a bijection x→ y.

Theorem B.1.14 (Cantor-Bernstein). Let x, y be sets. Then x ∼= y iff there are injections
x→ y and y → x.

B.1.15. In particular, we can ask if a set is finite, countable, etc.

Definition B.1.16. A finite set is a set x such that for every y ⊆ x, if x ∼= y, then x = y.
Otherwise, the set x is an infinite set .

B.1.17. However, it is not obvious (and in fact, may even be false) that there is an infinite
set at this stage.

Axiom B.1.18 (infinity). There exists a set x such that ∅ ∈ x and for all sets y ∈ x,
{y ∪ {y}} ∈ x.

B.1.19. Let N be the smallest set which is furnished by the axiom of infinity. From N we
may construct Z, Q, and other familiar countable objects.

Definition B.1.20. A set x is a countable set if there is an injection x → N. Otherwise,
the set x is an uncountable set .

B.1.21. Again we get stuck; it is not obvious (and may be false) that there can be uncount-
able sets.
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B.1.22. The axioms that follow are highly dangerous. They assert the existence of deeply
infinitary sets, whose elements cannot be easily described. This is the essence of the para-
doxical examples that we will use axiomatic set theory to prove the existence of. Famously,
Lebesgue rejected the axiom of choice (while implicitly using weak forms of it); modern
constructivists, finitists, and intuitionists reject some or all of the following axioms (or even
the axiom of infinity).

Axiom B.1.23 (power set). For every set x, there exists a set y, usually denoted 2x, such
that for all sets z, z ∈ y iff z ⊆ x.

B.1.24. The axioms that we have developed up to this point define what is known as Zermelo
set theory .

B.1.25. There is clearly an injection x→ 2x, given by y 7→ {y}.

Theorem B.1.26 (Cantor’s diagonal argument). For every set x, there is no injection
2x → x.

B.1.27. In particular, 2N is uncountable. We may now prove the existence of R, 2R, the
topology of R, and so on. For example, we have:

Theorem B.1.28 (Dedekind). There exists a set R, whose elements are nonempty proper
subsets x of Q such that for each q ∈ x, if r ∈ Q and r < q then r ∈ x, and there is an s ∈ x
such that s > x. There exists a ring structure on R which turns R into an ordered field of
characteristic 0 such that for every set X ∈ 2R, supX is well-defined. Moreover, R is unique
up to unique isomorphism of ordered fields.

Definition B.1.29. A real number is an element of R.

B.1.30. We now pause to introduce the notion of transfinite induction, which we will use a
few times.

Definition B.1.31. A transitive set is a set x such that x ⊂ 2x.

B.1.32. Thus every element of a transitive set is also a subset of x.

Definition B.1.33. An ordinal is a transitive set x such that for every y ∈ x, y is an ordinal.

B.1.34. This definition may seem circular — but it is not. ∅ is an ordinal, usually denoted
0 when we think of it as an ordinal, and every natural number is an ordinal (why?), but so is
N, which we usually denote ω when we think of it as an ordinal. From there we keep going:
given an ordinal α we define its successor α+ 1 = α ∪ {α}. Not every ordinal is a successor
or 0; for example ω was not. Such ordinals are known as limits . They are limit points in the
order topology.

Theorem B.1.35 (transfinite induction). Fix a limit ordinal κ. Let X be a set of ordinals
such that:

1. 0 ∈ X.
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2. For every ordinal α ∈ X, α + 1 ∈ X.

3. If δ < κ is a limit ordinal and for every α < δ, α ∈ X, then δ ∈ X.

Then X = κ.

B.1.36. The trivial example of transfinite induction is when κ = ω; then there are no limit
ordinals to consider and the theorem collapses down to induction on N.

B.1.37. From transfinite induction we can introduce transfinite recursion. Suppose that κ
is a limit ordinal, and we want to define sets xα for every α < κ. Then we just have to:

1. Define x0.

2. Show that if we can define xα, then we can define xα+1.

3. Show that for every limit ordinal δ < κ, if we can for every α < δ define xα, then we
can define xδ.

Then the theorem of transfinite induction will imply that, for every α < κ, xα is defined.

B.1.38. The set of all countable ordinals is an uncountable ordinal (in fact, the smallest
uncountable ordinal), which we denote ω1.

B.1.39. If X is a set of ordinals, then X has a least element; this is similar to the fact that
every set of natural numbers has a least element.

Definition B.1.40. An ordinal κ is a cardinal if κ is the least element of {α : α ∼= κ}.

B.1.41. The idea is that cardinals should be canonical representatives of the equivalence
class of all sets with a given cardinality.

B.1.42. We let ℵ0 be the least infinite cardinal (thus ℵ0 = ω), and for every cardinal ℵn, we
define ℵn+1 to be the least cardinal greater than ℵn. We would like to continue this recursion
and let ℵω be the least cardinal greater than ℵn for every n ∈ N. It is not possible to define
ℵω yet, but we can do so with the help of a new axiom schema.

Axiom B.1.43 (replacement schema). For every set X, every first-order formula with N+2
free variables ϕ, and all sets w1, . . . , wN , if for every x ∈ X there is exactly one set y such
that ϕ(x, y, w1, . . . , wN) is true, then there is a set z such that y ∈ z iff there is an x ∈ X
such that ϕ(x, y, w1, . . . , wN) is true.

B.1.44. In other words, if F is a function which can be explicitly defined by a first-order
formula in terms of N parameters w1, . . . , wN , then the image of F is a set. It follows from
the replacement schema that ℵα is defined for every ordinal α.

B.1.45. Zermelo set theory along with the replacement schema is known as Zermelo-Fraenkel
set theory .

B.1.46. Zermelo-Fraenkel set theory cannot prove that every set is in bijection with a car-
dinal, or that every vector space has a basis. To prove that every set is in bijection with a
cardinal, Zermelo introduced the so-called axiom of choice.
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Axiom B.1.47 (choice). For every surjection f : X → Y there is an injection g : Y → X
such that for every y ∈ Y , f(g(y)) = y.

B.1.48. In other words if f : X → Y is a surjection then for every y ∈ Y we may choose
x ∈ X so that f(x) = y. This follows from Zermelo-Fraenkel set theory if we only have to
choose finitely many x, but in general, X may be uncountable, so that we may have to make
uncountably many choices when we define g.

B.1.49. The above axioms comprise Zermelo-Fraenkel set theory with choice. Throughout
the text, we assume Zermelo-Fraenkel set theory with choice.

Theorem B.1.50 (Zermelo’s well-ordering theorem). For every set x there is a unique
cardinal κ such that x ∼= κ.

Definition B.1.51. For every set x, the unique cardinal κ such that x ∼= κ is called the
cardinality of x. We denote the cardinality of x by cardx.

Proof of Zermelo’s well-ordering theorem. Uniqueness is obvious since ∼= is an equivalence
relation. So we need a cardinal κ and a bijection f : κ→ x.

Let λ be a cardinal. We first build a function fλ : λ → x by transfinite recursion, using
the axiom of choice. Choose y ∈ x and set fλ(0) = y. Suppose α < λ and we have defined
fλ(β) for β < α. Choose z ∈ x such that for every such β, fλ(β) 6= z, if such a z exists;
otherwise set fλ(β) = y. By transfinite recursion, this defines a function fλ. If fλ is a
bijection we can set κ = λ and we’re done.

Otherwise suppose fλ is not injective. Then there is an ordinal β < λ (so in particular,
card β < λ) such that fλ|β is injective and β is maximal possible (so in particular, fλ|β
is surjective), by construction of fλ. Let κ = card β and choose g : β → κ. Then set
f = (fλ|β) ◦ g−1.

Finally suppose fλ is not surjective. Let δ = card 2λ and consider fδ instead. If the
process of passing from λ to δ does not halt, then there are arbitrarily large cardinals δ
which admit injections δ → x, so the universe of all sets embeds in x. This breaks Russell’s
paradox.

B.1.52. Note that while we technically don’t need Zermelo’s well-ordering theorem to prove
the Cantor-Bernstein theorem, it is an immediate consequence.

Definition B.1.53. We define i0 = ℵ0, and for every α, iα+1 to be the cardinality of 2iα .
If δ is a limit ordinal we let iδ be the cardinality of

⋃
α<δ iα.

B.1.54. By Cantor’s diagonal argument, iα < iβ whenever α < β.

Theorem B.1.55. Let λ ≤ κ be infinite cardinals. Suppose that X is a set of cardinality λ,
whose elements are sets of cardinality κ. Then

⋃
x∈X x has cardinality κ. Moreover, if λ < κ

and κ = iα for some α, then the Cartesian product of λ many copies of κ has cardinality κ.

B.1.56. In particular, if λ is countable or λ = i1, then a union of λ many sets of cardinality
i1 has cardinality i1.

Theorem B.1.57. Let T be the set of all open subsets of R; then T has cardinality i1.
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B.1.58. Another consequence of Zermelo’s well-ordering theorem is Zorn’s lemma, which
is frequently useful. The point is to allow us to build up “deeply infinitary” objects (that
cannot be completed in ω many steps!) without explicitly using transfinite recursion. Of
course the proof will be by transfinite recursion, but mathematicians who are not logicians
tend to find the transfinite terrifying, and use Zorn’s lemma as something of a black box.

Definition B.1.59. Let P be a partially ordered set. A chain C in P is a set such that for
every x, y ∈ C, x ≤ y or y ≤ x.

Theorem B.1.60 (Zorn’s lemma). Let P be a partially ordered set such that every chain
in P has an upper bound. Then P has a maximal element.

Proof. Let κ = cardP and choose a bijection f : κ → P. We will define an ordinal δ and
an injection g : δ + 1 → P as follows. Let g(0) = f(0). If g(α) has been defined and is
not maximal, there is a β < κ such that f(β) > g(α); choose the least such β, and set
g(α + 1) = f(β). If g(α) has been defined for all α < γ, then let Cγ = {g(α) : α < γ}; then
Cγ is a chain, so it has an upper bound, which we define to be g(γ).

If the above process stops at some δ, then g(δ) is maximal in P. Otherwise, there are
arbitrarily large ordinals δ such that there are injections δ → P, hence δ → κ. In particular
we could take δ = card 2κ and get an injection 2κ → κ, a contradiction.

B.2 Universal properties

This section has nothing to do with measure theory. It solely exists to justify certain algebraic
handwaves in the appendices. The reader who is interested in category theory should read
Aluffi [Alu09] for an introduction, or Riehl [Rie17] for more advanced content.

B.2.1. To avoid technicalities we adjoin a new axiom to the Zermelo-Fraenkel set theory
with the axiom of choice to obtain a weak form of Tarski-Grothendieck set theory .

Definition B.2.2. A transitive set U is a universe if N ∈ U , U is closed under pairing and
power set, and for every subset V ⊂ U of strictly less cardinality than U ,

⋃
x∈V x ∈ U .

Axiom B.2.3 (universe). There exists a universe.

B.2.4. Henceforth we fix a universe U . One can show that universes are closed under every
relevant operation that mathematicians might care about, so any object that will ever appear
in this book is contained in U . For example R ∈ U , any measurable subset of R is in U , and
any Banach space we ever consider is in U .

Definition B.2.5. A small set is an element of U .

B.2.6. So anything that we will ever have reason to care about, except in this section, is
small.
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Definition B.2.7. A category C is a set, whose elements are called objects , along with small
sets Hom(x, y) for all objects x, y ∈ C, whose elements are called morphisms from x to y,
equipped with composition operations

Hom(x, y)× Hom(y, z)→ Hom(x, z)

(ϕ, ψ) 7→ ψϕ

such that:

1. For every object x ∈ C, Hom(x, x) contains a morphism 1x which is an identity in the
sense that for all ϕ ∈ Hom(x, y), ϕ = ϕ1x and for every ψ ∈ Hom(y, x), ψ = 1xψ.

2. Composition is associative in the sense that ψ(ϕρ) = (ψϕ)ρ whenever ψϕ and ϕρ are
defined.

B.2.8. For example U forms a category, whose objects are small sets, and whose morphisms
are defined by letting Hom(x, y) be the set of all functions x → y. We dare not define a
category whose objects consist of all sets, due to Russell’s paradox; but we will abuse termi-
nology and call U the category of sets all the same. We denote it by Set. Similarly we define
Grp, the category of (small) groups where the morphisms are group homomorphisms, and
Vect(K), the category of (small) vector spaces over a (small) field K where the morphisms
are linear maps.

B.2.9. It can be convenient to draw diagrams of morphisms, which are graphs where the
nodes are objects, an edge from x to y is a morphism in Hom(x, y), and the diagram commutes
if for any two objects x, y in the diagram and any two paths ϕ1 · · ·ϕn and ψ1 · · ·ψm from
x, y, ϕ1 · · ·ϕn = ψ1 · · ·ψm. For example, the diagram

x1 x2

y1 y2

ϕ1

ψ1 ψ2

ϕ2

commutes iff ψ1ϕ2 = ψ1ϕ2.

Definition B.2.10. Let C be a category, x, y ∈ C objects, and ϕ ∈ Hom(x, y). We say
that ϕ is an isomorphism, and x, y are isomorphic, if there is a ψ ∈ Hom(y, x) which is an
inverse to ϕ in the sense that ϕψ = 1y and ψϕ = 1x.

Definition B.2.11. Let C be a category and x ∈ C an object. We say that x is initial in
C if for every y ∈ C there is a unique morphism in Hom(x, y). Similarly we say that x is
final if for every y there is a unique morphism in Hom(y, x). Either way, we say that x is
terminal .

B.2.12. If x and y are terminal, then there is a unique isomorphism between x and y. In
category theory one cannot distinguish between two objects between which there is a unique
isomorphism, so we abuse terminology and say that x = y, even if x, y are not equal in
the sense of the axiom of extensionality. Thus a terminal object, if it exists, is unique. For
example, the trivial vector space is the unique terminal object in Vect.
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Definition B.2.13. Let P be a property held by objects x in a certain category C. We say
that P is a universal property if, for every x that holds property P , x is terminal in C.

B.2.14. Therefore an object with a universal property is unique.

B.2.15. We can now make rigorous our handwaving about the universal property of the
completion. Let V be a normed space. We define a category C(V ), whose objects are
norm-preserving linear maps V → X into a Banach space X, and whose morphisms ϕ are
commutative diagrams of linear maps

X

V

Y.

ϕ

The initial object of V is the inclusion map V → W , where W is the completion of V . There-
fore the completion is well-defined if it exists (which it does, by Theorem A.2.7). Thus we
can take the universal property as the definition of the completion, and take Theorem A.2.7
as just an indication that this definition makes sense; we can then forget about such hideous
objects as Cau(Cau(V )).

B.2.16. We paraphrase the above universal property by saying that the completion of V is
the initial Banach space which contains a copy of V . A similar argument shows that R is
uniquely defined as the initial complete metric space which contains a copy of Q.

B.3 Point-set topology

We briefly sketch ideas from point-set topology that we will need. We refer the reader to
Munkres [Mun00] for reference.

Definition B.3.1. A topology T in a set X is a set of subsets of X such that:

1. ∅, X ∈ T .

2. If U ⊆ T , then the union
⋃
U∈U U of all elements of U is also in T .

3. If U1, . . . , UnT then U1 ∩ · · · ∩ Un ∈ T .

A pair (X, T ) is called a topological space and usually just denoted X. Elements of T
are called open sets . The complement of an open set is called a closed set . If x ∈ X, a
neighborhood of x is an open set containing x.

B.3.2. It follows that the arbitrary union and finite intersection of open sets is open, and
the arbitrary intersection and finite union of closed sets. The point of a topology is that if
K is a closed set, K is closed under taking limits, as we will see.



B.3. POINT-SET TOPOLOGY 161

B.3.3. The obvious examples of topologies on a set X are the discrete topology (wherein
every set is open) and the indiscrete topology (wherein the only open sets are ∅, X).

Definition B.3.4. A set B of subsets of a set X is called a basis if for all B1, . . . , Bn ∈ B,
B1 ∩ · · · ∩Bn ∈ B.

B.3.5. Every basis generates a topology whose elements are arbitrary unions of sets in the
basis.

Definition B.3.6. A semimetric d on a set X is a function d : X ×X → [0,∞) such that:

1. For all x, d(x, x) = 0.

2. For all x, y, d(x, y) = d(y, x).

3. The triangle inequality : For all x, y, z, d(x, y) ≤ d(x, z) + d(z, x).

If the only pairs (x, y) such that d(x, y) = 0 are those with x = y, we say that d is a metric
and call X = (X, d) a metric space. We call sets of the form B(x, ε) = {y ∈ X : d(x, y) < ε},
where ε > 0 and x ∈ X, open balls .

B.3.7. The open balls of a semimetric on X form a basis of subsets of X, so every semimetric
induces a topology, whose open sets are unions of open balls.

Example B.3.8. Every seminorm induces a semimetric by d(x, y) = ||x−y||. In particular,
Rd has a norm (namely its absolute value), so Rd is a topological space.

Definition B.3.9. Let X be a set of topological spaces. The product space
∏
X is the space

X which has
∏
X as a set, and has the smallest topology T such that for every open set

U ⊆ Y , Y ∈ X , π : X → Y the canonical projection, π−1(U) ∈ T .

Example B.3.10. X × Y is a product space. The open sets are generated by those of the
form U × V where U ⊆ X and V ⊆ Y are open.

Definition B.3.11. Let X be a topological space and Y ⊆ X a subset. We say that U ⊆ Y
is open in Y (or relatively open) if there is an open set V ⊆ X such that U = V ∩ Y . With
respect to that topology, we call Y a subspace of X.

B.3.12. Topological spaces allow us to define continuity in a high level of abstraction. This
agrees with the usual definition of a continuous function [0, 1]→ R.

Definition B.3.13. Let X, Y be topological spaces and f : X → Y . We say that f is
continuous if for every U ⊆ Y open, f−1(Y ) is open.

Lemma B.3.14. Let X, Y be metric spaces and f : X → Y . Then f is continuous iff for
every ε > 0 and x ∈ X, there is a δ > 0 such that for every x′ ∈ X, if d(x, x′) < δ, then
d(f(x), f(x′)) < ε.

Lemma B.3.15. Let X be a set of topological spaces. Then X =
∏
X satisfies the universal

property of products in the category of topological spaces: for every Y ∈ X , πY : X → Y
the canonical projection, πY is continuous, and for every topological space Z, if we are given
maps fY : Z → Y for every Y , there is a unique map f : Z → X such that πY ◦ f = fY .
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B.3.16. We now want to talk about limits. Unfortunately at the level of abstraction we are
working at, this proves quite tricky.

Definition B.3.17. A directed set is a partially ordered set P such that for all α1, . . . , αk ∈ P,
sup(α1, . . . , αk) exists.

B.3.18. For example N is directed, and in fact so is any ordinal. A topology, equipped with
the relation ⊆, is also directed.

Definition B.3.19. Let P be a directed set and X a topological space. A net in X, indexed
by P, is a function P→ X. If x is a net, we usually write xα instead of x(α). A sequence is
a net indexed by N.

Definition B.3.20. Let P be a directed set and X a topological space. Let x be a net in X
indexed by P. Let x∗ ∈ X. We say that x∗ is the limit of x if for every neighborhood U of
x, there is an α ∈ P such that for every β ≥ α, xβ ∈ U . In this case we write limγ xγ = x∗

or xγ → x∗ if it is clear from context that γ is a dummy variable. If x has a limit we say
that X converges .

Lemma B.3.21. In a metric space, xn → x iff for every ε > 0 there is a N ∈ N such that
for all n > N , d(xn, x) < ε.

Lemma B.3.22. Let f : X → Y . Then f is continuous iff for every net xγ → x∗ in X,
f(xγ)→ f(x∗) in Y .

Definition B.3.23. We say that a function h : S → P is cofinal if for every α ∈ P there is
a β in the image of h such that β ≥ α. We say that a function f : P→ P between directed
sets is monotone if for every α ≤ β in P, f(α) ≤ f(β).

Definition B.3.24. Let X be a topological space. Let x be a net indexed by P and x′ a
net indexed by P′. We say that x′ is a subnet of x if there is a monotone cofinal function
f : P → P′ such that x′α = xf(α). A subsequence is a sequence which is a subnet of a
subsequence.

Lemma B.3.25. Let X be a topological space. A set K ⊆ X is closed iff for every net x
in K which converges in X, x converges in K. Moreover, given a set A ⊆ X, the smallest
closed set K containing A is the set of all limits of nets in A.

B.3.26. Subsequences are significantly easier to work with than subnets, as one can eliminate
the need to worry about cofinality; y is a subsequence of x iff there is an increasing sequence
n of natural numbers such that xnk = yk for all k ∈ N.

B.3.27. At this point our definition of limit has three problems:

1. We want to eliminate the need to choose P whenever possible, and just work with
P = N.

2. We want to be able to guarantee that if a net has a limit x∗, then x∗ is unique.

3. We want to be able to guarantee that every net has a subnet which converges.
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These are the essences of the definitions of a first-countable, Hausdorff, and compact space
respectively.

Definition B.3.28. Let X be a topological space and x ∈ X. A fundamental system of
neighborhoods at x is a set U of open sets U 3 x such that for every open set V 3 x there
is a U ∈ U with U ⊆ V . If, for every x ∈ X, x has a countable fundamental system of
neighborhoods, then we say that X is a first-countable space.

Lemma B.3.29. Let X be a first-countable space. A set K ⊆ X is closed iff for every
sequence x in K which converges in X, x converges in K. Moreover, given a set A ⊆ X, the
smallest closed set K containing A is the set of all limits of sequences in A.

Lemma B.3.30. Every metric space is first-countable, and a product of countably many
first-countable spaces is first-countable.

Lemma B.3.31. Let X be a topological space. The following are equivalent:

1. For every two points x1, x2 ∈ X, there are open sets U1 3 x1, U2 3 x2 such that U1∩U2

is empty.

2. The diagonal ∆(X) = {(x, x) : x ∈ X} is a closed subset of X ×X.

3. For every sequence x ∈ X, x has at most one limit.

Here X ×X is viewed as a product space.

Definition B.3.32. A Hausdorff space is a topological space such that for every two points
x1, x2 ∈ X, either x1 = x2 or there are open sets U1 3 x1, U2 3 x2 such that U1 ∩ U2 is
empty. If X is a Hausdorff space, we also say that X satisfies Axiom T 2.

B.3.33. There are other properties called Axiom T s, where if s′ ≤ s then T s implies T s
′
.

For example:

Definition B.3.34. Let X be a topological space. We say that X satisfies:

1. Axiom T 0, if for every x1, x2 ∈ X, either x1 = x2 or there is an open set U such that
x1 ∈ U and x2 /∈ U .

2. Axiom T 1, if for every x ∈ X, {x} is a closed set.

3. Axiom T 4, if for every two closed sets K1, K2 ⊆ X, either K1 = K2 or there are open
sets U1, U2 such that K1 ⊆ U1, K2 ⊆ U2, and U1 ∩ U2 is empty.

Axioms of the form Axiom T s are called separation axioms .

Lemma B.3.35. One has a string of implications: Axiom T 4 implies Axiom T 2, which
implies Axiom T 1, which implies Axiom T 0.

Lemma B.3.36. Let X be a semimetric space. The following are equivalent:

1. X is a metric space.
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2. X satisfies Axiom T 4.

3. X satisfies Axiom T 0.

Moreover, if R is the equivalence relation defined by x1Rx2 iff d(x1, x2) = 0, then X/R can
be given the structure of a metric space.

B.3.37. In particular, every metric space is Hausdorff and every semimetric space can be
turned into a metric space by identifying points that are indistinguishable by its topology.

Definition B.3.38. An open cover U of a topological space X is a set of open sets such
that

⋃
U = X. A subcover of U is an open cover ⊆ U .

Definition B.3.39. A compact space is a topological space such that every open cover has
a finite subcover. A locally compact space is a topological space X such that for every x ∈ X
there is an open set U 3 x such that the smallest closed set containing U is compact.

Lemma B.3.40. Let X be a topological space. Then X is compact iff for every net x in
X, there is a subnet x′ such that x′ is convergent. Moreover, if X is first-countable, then we
can replace the word “net” by “sequence” in the previous sentence.

Lemma B.3.41. Let X be a topological space. Then:

1. If X is Hausdorff and K ⊆ X is compact, then K is closed.

2. If f : X → Y is continuous and X is compact, then f(X) is compact.

In particular, if X is compact, Y is Hausdorff, and f : X → Y is continuous, then f sends
closed sets to closed sets.

Theorem B.3.42 (Heine-Borel). Rd is locally compact, and K ⊆ Rd is compact iff K is
closed and bounded.

Lemma B.3.43. If K is a compact space, then K is Hausdorff iff K satisfies Axiom T 4.

B.3.44. We now arrive at the two nontrivial theorems of point-set topology which will be
used in the main text as black boxes. Since they are so important we sketch their proofs, but
since these results rely on the above lemmata which we have not proved, these arguments
are incomplete; see Munkres [Mun00] for a complete exposition.

Theorem B.3.45 (Urysohn lemma and Tietze extension). Let X be a topological space,
A,K ⊆ X are disjoint, and A is closed. Suppose that one of the following is true.

1. X satisfies Axiom T 4 and K is closed.

2. X is a locally compact Hausdorff space and A is compact.

Then:

1. There is a continuous function f : X → [0, 1] such that f |A = 0 and f |K = 1.
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2. For every interval L ⊆ R and every continuous function g : K → L, there is a contin-
uous function G : X → L such that G|K = g.

Proof. We prove this assuming Axiom T 4. The proof assuming that X is a locally compact
Hausdorff space follows from the case of Axiom T 4 and the previous lemma after a little
work, which we omit.

We now prove the existence of f . Let U denote the smallest closed set containing an open
set U . Set U(1/2) to be an open set containing K which is disjoint from a neighborhood
of A, which exists by Axiom T 4. Then U(1/2)c is closed and so by Axiom T 4 we can find
U(1/4) open such that U(1/4) ⊆ U(1/2). Similarly we can find U(3/4) open such that
V (1/2) is contained in the interior of U(3/4). Repeating this process we define U(p/2n) for
every 0 < p < 2n, n ∈ N, such that U(s) ⊆ U(r). Now set

f(x) = inf
x∈U(r)

r

if such an r exists, otherwise f(x) = 1. Since {p/2n : 0 < p < 2n, n ∈ N} is dense in [0, 1],
one can check that f is continuous, so f is as desired.

We may assume that L = [0, 1]; we omit the details. We may then set G|A = 0, and use
the function f to interpolate between A,K. We omit the details.

B.3.46. Note carefully that the above result does not imply that every locally compact
Hausdorff space satisfies Axiom T 4 — in fact this is false.

Theorem B.3.47 (Tychonoff). Let X be a nonempty set of nonempty compact spaces. Let
X =

∏
X . Then X is compact and nonempty.

Proof. By Zermelo’s well-ordering theorem we may write X = (Xα)α<κ where κ is a cardinal
and the α are ordinals. We proceed by transfinite induction, since κ can be viewed as an
ordinal. The base case is κ = 1, in which case X = X0 is obviously compact.

The inductive case is that κ = β+1, where Y =
∏

α<βXα is compact and Xβ is compact.
So we must show that X = Y ×Xβ is compact. Let x = (y, z) be a net in X, where y is a
net in Y and z is a net in Xβ. By compactness there is a subnet x′ = (y′, z′) such that y′ is
a convergent net in Y . Then by compactness again there is a subnet x′′ = (y′′, z′′) of x′ such
that z′′ is a convergent net in Xβ. But y′ is convergent in Y and y′′ is a subnet of y′ so y′′ is
convergent in Y . Therefore x′′ is convergent in X.

The interesting case is the limit case, thus if δ < κ then Yδ =
∏

α<δ is compact, and κ is
not the successor of any ordinal. In that case X =

∏
α<κXα, and if x is a net in X then we

can let yδ be the projection of x onto Yδ. So we can find subnets zδ of yδ which converge.
Let P be the domain of x. We may assume that P = γ for some cardinal γ, by the lemma:

Lemma B.3.48. Let Q be a partially ordered set. Then there is a cardinal γ and an injection
f : Q→ γ such that if x ≤ y then f(x) ≤ f(y).

This is a straightforward consequence of Zorn’s lemma, once we use Zermelo’s well-
ordering theorem to find γ > cardQ large enough. We omit the details.

By replacing κ with a larger cardinal λ, and setting Xβ to be a point for all κ ≤ β < λ,
we may assume that γ ≤ κ. For every α let x′α = zαα . Then x′ converges since zα does for
every α. So x′ has a limit. Therefore X is compact.
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B.3.49. Note that the above use of the axiom of choice (as Zermelo’s well-ordering theorem
and Zorn’s lemma) cannot be avoided. There is a theorem of Kelley [Kel50] which says that if
we are in Zermelo-Fraenkel set theory possibly without the axiom of choice, but Tychonoff’s
theorem holds, then so does the axiom of choice.
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compact space, 164
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probability space, 36
product σ-algebra, 88
product measurable space, 88
product measure, 89
product measured space, 89
product space, 161
projective set, 48
pseudodifferential operator, 136
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